Upper crustal structure beneath Southwest Iberia north of the convergent boundary between the Eurasian and African plates

Upper crustal structure beneath Southwest Iberia north of the convergent boundary between the Eurasian and African plates

  • 摘要: The 3-D P- and S-wave velocity models of the upper crust beneath Southwest Iberia are determined by inverting arrival time data from local earthquakes using a seismic tomography method. We used a total of 3085 P- and 2780 S-wave high quality arrival times from 886 local earthquakes recorded by a permanent seismic network, which is operated by the Institute of Meteorology (IM), Lisbon, Portugal. The computed P- and S-wave velocities are used to determine the 3-D distributions of Vp/Vs ratio. The 3-D velocity and Vp/Vs ratio images display clear lateral heterogeneities in the study area. Significant velocity variations up to ±6% are revealed in the upper crust beneath Southwest Iberia. At 4 km depth, both P- and S-wave velocity take average to high values relative to the initial velocity model, while at 12 km, low P-wave velocities are clearly visible along the coast and in the southern parts. High S-wave velocities at 12 km depth are imaged in the central parts, and average values along the coast; although some scattered patches of low and high S-wave velocities are also revealed. The Vp/Vs ratio is generally high at depths of 4 and 12 km along the coastal parts with some regions of high Vp/Vs ratio in the north at 4 km depth, and low Vp/Vs ratio in the central southern parts at a depth of 12 km. The imaged low velocity and high Vp/Vs ratios are related to the thick saturated and unconsolidated sediments covering the region; whereas the high velocity regions are generally associated with the Mesozoic basement rocks.

     

    Abstract: The 3-D P- and S-wave velocity models of the upper crust beneath Southwest Iberia are determined by inverting arrival time data from local earthquakes using a seismic tomography method. We used a total of 3085 P- and 2780 S-wave high quality arrival times from 886 local earthquakes recorded by a permanent seismic network, which is operated by the Institute of Meteorology (IM), Lisbon, Portugal. The computed P- and S-wave velocities are used to determine the 3-D distributions of Vp/Vs ratio. The 3-D velocity and Vp/Vs ratio images display clear lateral heterogeneities in the study area. Significant velocity variations up to ±6% are revealed in the upper crust beneath Southwest Iberia. At 4 km depth, both P- and S-wave velocity take average to high values relative to the initial velocity model, while at 12 km, low P-wave velocities are clearly visible along the coast and in the southern parts. High S-wave velocities at 12 km depth are imaged in the central parts, and average values along the coast; although some scattered patches of low and high S-wave velocities are also revealed. The Vp/Vs ratio is generally high at depths of 4 and 12 km along the coastal parts with some regions of high Vp/Vs ratio in the north at 4 km depth, and low Vp/Vs ratio in the central southern parts at a depth of 12 km. The imaged low velocity and high Vp/Vs ratios are related to the thick saturated and unconsolidated sediments covering the region; whereas the high velocity regions are generally associated with the Mesozoic basement rocks.

     

/

返回文章
返回