2022 Vol. 13, No. 4

Research Paper
Genesis of the Maoling gold deposit in the Liaodong Peninsula: Constraints from a combined fluid inclusion, C-H-O-S-Pb-He-Ar isotopic and geochronological studies
Peng Zhang, Linlin Kou, Yan Zhao, Deming Sha
2022, 13(4): 101379. doi: 10.1016/j.gsf.2022.101379
Abstract(320) HTML PDF(54)
The large tonnage Maoling gold deposit (25 t @ 3.2 g/t) is located in the southwest Liaodong Peninsula, North China Craton. The deposit is hosted in the Paleoproterozoic metamorphic rocks. Four stages of mineralization were identified in the deposit: (stage I) quartz-arsenopyrite ±pyrite, (stage II) quartz-gold- arsenopyrite-pyrrhotite, (stage III) quartz-gold- polymetallic sulfide, and (stage IV) quartz-calcite-pyrrhotite. In this paper, we present fluid inclusion, C-H-O-S-Pb-He-Ar isotope data, zircon U-Pb, and gold-bearing sulfide (i.e. arsenopyrite and pyrrhotite) Rb-Sr age of the Maoling gold deposit to constrain its genesis and ore-forming mechanism. Three types of fluid inclusions were distinguished in quartz-bearing veins, including liquid-rich two-phase (WL type), gas-rich two-phase (GL type), and daughter mineral-bearing fluid inclusions (S type). Fluid inclusions data show that the homogenization at temperatures 197 to 372 ℃ for stage I, 126 to 319 ℃ for stage II, 119 to 189 ℃ for stage III, and 115 to 183 ℃ for stage IV, with corresponding salinities of 3.7 to 22.6 wt.%, 4.7 to 23.2 wt.%, 5.3 to 23.2 wt.%, and 1.7 to 14.9 wt.% NaCl equiv., respectively. Fluid boiling was the critical factor controlling the gold and associated sulfide precipitation at Maoling. Hydrogen and oxygen stable isotopic analyses for quartz yielded δ18O = -5.0‰ to 9.8‰ and δ D = -133.5‰ to -77.0‰. Carbon stable isotopic analyses for calcite and ankerite yielded δ13C = -2.3‰ to -1.2‰ and O = 7.9‰ to 14.1‰. The C-H-O isotope data show that the ore-forming fluids were originated from magmatic water with meteoric water input during mineralization. Hydrothermal inclusions in arsenopyrite have 3He/4He ratios of 0.002 Ra to 0.054 Ra, and 40Ar/36Ar rations of 1225 to 3930, indicating that the ore-forming fluids were dominantly derived from crustal sources almost no mantle input. Sulfur isotopic values of Maoling fine-grained granite range from 6.‰1 to 9.8‰, with a mean of 7.7‰, δ34S values of arsenopyrite from the mineralized phyllite (host rock) range from 8.9‰ to 10.6‰, with a mean of 10.0‰, by contrast, δ34S values of sulfides from ore vary between 4.3‰ and 10.6‰, with a mean of 6.8‰, suggesting that sulfur was mainly originated from both the host rock and magma. Lead radioactiveisotopic analyses for sulfides yielded 206Pb/204Pb = 15.830–17.103, 207Pb/204Pb = 13.397–15.548, 208Pb/204Pb = 35.478–36.683, and for Maoling fine-grained granite yielded 206Pb/204Pb = 18.757–19.053, 207Pb/204Pb = 15.596–15.612, and 208Pb/204Pb = 38.184–39.309, also suggesting that the ore-forming materials were mainly originated from the host rocks and magma. Zircon U-Pb dating demonstrates that the Maoling fine-grained granite was emplaced at 192.7 ±1.8 Ma, and the host rock (mineralized phyllite) was emplaced at some time after 2065.0 ±27.0 Ma. Arsenopyrite and pyrrhotite give Rb–Sr isochron age of 188.7 ±4.5 Ma, indicating that both magmatism and mineralization occurred during the Early Jurassic. Geochronological and geochemical data, together with the regional geological history, indicate that Early Jurassic magmatism and mineralization of the Maoling gold deposit occurred during the subducting Paleo-Pacific Plate beneath Eurasia, and the Maoling gold deposit is of the intrusion-related gold deposit type.
Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts
Stephen F. Foley, Isra S. Ezad, Sieger R. van der Laan, Maik Pertermann
2022, 13(4): 101380. doi: 10.1016/j.gsf.2022.101380
Abstract(199) HTML PDF(30)
Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.
Results show that KR melts rapidly and completely within 50 ℃ of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.
Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.
Anomalous elasticity of talc at high pressures: Implications for subduction systems
Ye Peng, Mainak Mookherjee, Andreas Hermann, Geeth Manthilake, David Mainprice
2022, 13(4): 101381. doi: 10.1016/j.gsf.2022.101381
Abstract(97) HTML PDF(14)
Talc is a layered hydrous silicate mineral that plays a vital role in transporting water into Earth’s interior and is crucial for explaining geophysical observations in subduction zone settings. In this study, we explored the structure, equation of state, and elasticity of both triclinic and monoclinic talc under high pressures up to 18 GPa using first principles simulations based on density functional theory corrected for dispersive forces. Our results indicate that principal components of the full elastic constant tensor C11 and C22, shear components C66, and several off-diagonal components show anomalous pressure dependence. This non-monotonic pressure dependence of elastic constant components is likely related to the structural changes and is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-pressure polytype talc-II. The polytypic transition of talc occurs at pressures within its thermodynamic stability. However, the bulk and shear elastic moduli show no anomalous softening. Our study also shows that talc has low velocity, extremely high anisotropy, and anomalously high VP/VS ratio, thus making it a potential candidate mineral phase that could readily explain unusually high VP/VS ratio and large shear wave splitting delays as observed from seismological studies in many subduction systems.
Review on status of groundwater database and application prospect in deep-time digital earth plan
Wenkai Qiu, Teng Ma, Yanxin Wang, Jianmei Cheng, Chunli Su, Junxia Li
2022, 13(4): 101383. doi: 10.1016/j.gsf.2022.101383
Abstract(95) HTML PDF(13)
Groundwater is an important water resource. The total amount of active groundwater in a hydrological cycle is about 3.5 times that of the total amount of surface water. The information in the deep groundwater records the material exchange and dynamics in the earth’s evolution, which is an important aspect of the Deep-Time Digital Earth (DDE) plan. In recent years, scientists have discussed the distribution of transboundary aquifers and the environmental significance of groundwater resources through groundwater databases established by international organizations, such as the Global Groundwater Information System and the chronicles consortium, and national institutes, such as national geological surveys. The application of the groundwater database in the DDE plan, however, has been limited by the management, interactivity, and monitoring method of the groundwater data. The ability to further integrate data that are private and scattered across research institutions and individuals, while establishing an open, unified, and shared groundwater data platform, is essential to enhance our understanding of groundwater, ranging from shallow to deep water, which is a goal of the DDE plan. In this study, we introduced the current situation of groundwater database operations in domestic and international research and provided frontier research with groundwater big data. Considering the related objectives of the DDE plan and the limitations of existing groundwater databases, we proposed an improvement plan and new prospects for applying groundwater databases in the research of the deep earth.
Improving the WRF/urban modeling system in China by developing a national urban dataset
Huidong Li, Fenghui Yuan, Lidu Shen, Yage Liu, Zhonghua Zheng, Xu Zhou
2022, 13(4): 101385. doi: 10.1016/j.gsf.2022.101385
Abstract(231) HTML PDF(13)
Accurate modeling of urban climate is essential to predict potential environmental risks in cities. Urban datasets, such as urban land use and urban canopy parameters (UCPs), are key input data for urban climate models and largely affect their performance. However, access to reliable urban datasets is a challenge, especially in fast urbanizing countries. In this study, we developed a high-resolution national urban dataset in China (NUDC) for the WRF/urban modeling system and evaluated its effect on urban climate modeling. Specifically, an optimization method based on building morphology was proposed to classify urban land use types. The key UCPs, including building height and width, street width, surface imperviousness, and anthropogenic heat flux, were calculated for both single-layer Urban Canopy Model (UCM) and multiple-layer Building Energy Parameterization(BEP). The results show that the derived morphological-based urban land use classification could better reflect the urban characteristics, compared to the socioeconomic-function-based classification. The UCPs varied largely in spatial within and across the cities. The integration of the developed urban land use and UCPs datasets significantly improved the representation of urban canopy characteristics, contributing to a more accurate modeling of near-surface air temperature, humidity, and wind in urban areas. The UCM performed better in the modeling of air temperature and humidity, while the BEP performed better in the modeling of wind speed. The newly developed NUDC can advance the study of urban climate and improve the prediction of potential urban environmental risks in China.
High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China
Tiantian Wang, Chengshan Wang, Jahandar Ramezani, Xiaoqiao Wan, Zhiqiang Yu, Youfeng Gao, Huaiyu He, Huaichun Wu
2022, 13(4): 101386. doi: 10.1016/j.gsf.2022.101386
Abstract(111) HTML PDF(15)
The Songliao Basin in Northeast Asia is the largest and longest-lived rift basin and preserves a near-continuous continental succession of the most of the Cretaceous period, providing great material to investigate the adaption of the terrestrial systems to the Cretaceous greenhouse climate and tectonic events. However, the paucity of precise and accurate radioisotopic ages from the Early Cretaceous strata of the Songliao Basin has greatly held back the temporal and causal correlation of the continental records to the global Early Cretaceous records. Three tuff layers intercalated in the Yingcheng Formation have been intercepted by the SK-2 borehole, which offer excellent materials for radioisotopic dating and calibration of the chronostratigraphy of the Lower Cretaceous sequence of Songliao Basin. Moreover, the Yingcheng Formation recorded the largest and the last of the two major volcanic events in Songliao Basin, which also represents a turning point in the basin evolution history of Songliao from syn-rift stage to post-rift stage. Here we report high-precision U–Pb zircon geochronology by the CA-ID-TIMS technique on three tuff samples from the Yingcheng Formation of the SK-2 borehole in the Songliao Basin to construct a greatly improved, absolute age framework for the Yingcheng Formation and provide crucial age constraints for the Songliao Lower Cretaceous Strata. The new CA-ID-TIMS geochronology constrained the Yingcheng Formation at 102.571 + 0.320/-2.346 Ma to ca. 113 Ma, correlating to the Albian Stage. Combined with the previous published Songliao geochronology, the Quantou Formation is constrained to between 96.442 + 0.475/-0.086 Ma and 91.923 + 0.475/-0.086 Ma; the Denglouku Formation is constrained to between 102.571 + 0.320/-2.346 Ma and 96.442 + 0.475/-0.086 Ma; the age of the Shahezi Formation is estimated at ca. 113 Ma to ca. 118 Ma, which could extend to ca. 125 Ma in some locations in Songliao Basin. The major unconformity between the Yingcheng Formation and the Denglouku Formation, which represents the transition of the basin from syn-rift to post-rift is thus confined to between 102.571 + 0.320/-2.346 Ma and 96.442 + 0.475/-0.086 Ma. This is roughly contemporaneous with the change in the direction of the paleo-Pacific plate motion from west-southwest to north or northwest in mid-Cretaceous, suggesting their possible connections.
Double-sided subduction with contrasting polarities beneath the Pamir-Hindu Kush: Evidence from focal mechanism solutions and stress field inversion
Yu Yang, Zuoxun Zeng, Scott D. King, Xiao Shuang
2022, 13(4): 101399. doi: 10.1016/j.gsf.2022.101399
The Pamir-Hindu Kush region at the western end of the Himalayan-Tibet orogen is one of the most active regions on the globe with strong seismicity and deformation and provides a window to evaluate continental collision linked to two intra-continental subduction zones with different polarities. The seismicity and seismic tomography data show a steep northward subducting slab beneath the Hindu Kush and southward subducting slab under the Pamir. Here, we collect seismic catalogue with 3988 earthquake events to compute seismicity images and waveform data from 926 earthquake events to invert focal mechanism solutions and stress field with a view to characterize the subducting slabs under the Pamir-Hindu Kush region. Our results define two distinct seismic zones: a steep one beneath the Hindu Kush and a broad one beneath the Pamir. Deep and intermediate-depth earthquakes are mainly distributed in the Hindu Kush region which is controlled by thrust faulting, whereas the Pamir is dominated by strike-slip stress regime with shallow and intermediate-depth earthquakes. The area where the maximum principal stress axis is vertical in the southern Pamir corresponds to the location of a high-conductivity low-velocity region that contributes to the seismogenic processes in this region. We interpret the two distinct seismic zones to represent a double-sided subduction system where the Hindu Kush zone represents the northward subduction of the Indian plate, and the Pamir zone shows southward subduction of the Eurasian plate. A transition fault is inferred in the region between the Hindu Kush and the Pamir which regulates the opposing directions of motion of the Indian and Eurasian plates.
Crucial control on magmatic-hydrothermal Sn deposit in the Tengchong block, SW China: Evidence from magma differentiation and zircon geochemistry
Qiwei Zhang, Qingfei Wang, Gongjian Li, Xiang Sun, Qihai Shu, Jun Deng
2022, 13(4): 101401. doi: 10.1016/j.gsf.2022.101401
Abstract(117) HTML PDF(15)
Magmatic-hydrothermal Sn deposits are commonly associated with high silica magmas, but why most global high silica granites do not bear economic Sn ore grades remains unclear. Two crucial factors controlling magmatic-hydrothermal Sn mineralization, including advanced fractionation and depressurization-induced rapid cooling, were revealed in the case study of the Guyong granitic pluton linked with the Xiaolonghe Sn deposit, in the Tengchong block, SW China. The Guyong granitic pluton comprises three petrological facies: less evolved biotite syenogranite, evolved alkali granite and leucogranite, and highly evolved facies (the protolith of greisenized granite). Similar crystallization ages (~77 Ma) and gradual contact between different petrological facies indicate the Guyong granitic pluton records a continuous fractionation process. Monte Carlo-revised Rayleigh fractionation model suggests the fractionation degree of the Guyong pluton is markedly high (>87 wt.%) that can only be achieved by a high initial water (≥4 wt.%) content in the parent granitic magma revealed by rhyolite-MELTS calculation. Advanced degree fractionation causes the first Sn enrichment but it also significantly increases the viscosity of evolved magmas, suppressing the exsolution and transport of hydrothermal fluids. Hence, it must be compensated by the second critical factor: depressurization-induced rapid cooling, reflected by the occurrence of highly metamict zircons in the greisenized granite. The highly metamict feature, indicated by the large full width at half maximum (FWHM) values of zircon ν3(SiO4) peak (>19.5 cm-1), suggests these zircons do not experience thermal annealing but rapidly ascend into a shallow cooling environment. Depressurization-induced rapid cooling facilitates exsolution and transport of hydrothermal fluids, interacting with wall rocks and resulting in Sn mineralization.
The generation and evolution of the Archean continental crust: The granitoid story in southeastern Brazil
Rodrigo S. Marimon, Chris J. Hawkesworth, Elton L. Dantas, Rudolph A.J. Trouw, Wilson Teixeira, Peter C. Hackspacher, Allen Fetter, Ciro A. Ávila, Silvia Volante, Atlas V. Corrêa Neto, Everton M. Bongiolo, Rodrigo Vinagre, Maurício Simon
2022, 13(4): 101402. doi: 10.1016/j.gsf.2022.101402
Abstract(230) HTML PDF(23)
The Archean Eon was a time of geodynamic changes. Direct evidence of these transitions come from igneous/metaigneous rocks, which dominate cratonic segments worldwide. New data for granitoids from an Archean basement inlier related to the Southern São Francisco Craton (SSFC), are integrated with geochronological, isotopic and geochemical data on Archean granitoids from the SSFC. The rocks are divided into three main geochemical groups with different ages: (1) TTG (3.02–2.77 Ga); (2) medium- to high-K granitoids (2.85–2.72 Ga); and (3) A-type granites (2.7–2.6 Ga). The juvenile to chondritic (Hf-Nd isotopes) TTG were divided into two sub-groups, TTG 1 (low-HREE) and 2 (high-HREE), derived from partial melting of metamafic rocks similar to those from adjacent greenstone belts. The compositional diversity within the TTG is attributed to different pressures during partial melting, supported by a positive correlation of Dy/Yb and Sr/Zr, and batch melting calculations. The proposed TTG sources are geochemically similar to basaltic rocks from modern island-arcs, indicating the presence of subduction processes concomitant with TTG emplacement. From ~2.85 Ga to 2.70 Ga, the dominant rocks were K-rich granitoids. These are modeled as crustal melts of TTG, during regional metamorphism indicative of crustal thickening. Their compositional diversity is linked to: (i) differences in source composition; (ii) distinct melt fractions during partial melting; and (iii) different residual mineralogies reflecting varying P–T conditions. Post-collisional (~2.7–2.6 Ga) A-type granites reflect rifting in that they were closely followed by extension-related dyke swarms, and they are interpreted as differentiation or partial melting products of magmas derived from subduction-modified mantle. The sequence of granitoid emplacement indicates subduction-related magmatism was followed by crustal thickening, regional metamorphism and crustal melting, and post-collisional extension, similar to that seen in younger Wilson Cycles. It is compelling evidence that plate tectonics was active in this segment of Brazil from ~3 Ga.
Nanoscale mechanical property variations concerning mineral composition and contact of marine shale
Yong Li, Jianqi Chen, Derek Elsworth, Zhejun Pan, Xiaotian Ma
2022, 13(4): 101405. doi: 10.1016/j.gsf.2022.101405
Abstract(109) HTML PDF(7)
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale (Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis (MLA) and scanning electron microscopy (SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale. Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.
A continental back-arc setting for the Namaqua belt: Evidence from the Kakamas Domain
P.H. Macey, R.J. Thomas, A.F.M. Kisters, J.F.A. Diener, M. Angombe, S. Doggart, C.A. Groenewald, C.W. Lambert, J.A. Miller, H. Minnaar, H. Smith, H.F.G. Moen, E. Muvangua, A. Nguno, G. Shifotoka, J. Indongo, D. Frei, C. Spencer, P. le Roux, R.A. Armstrong, C. Tinguely
2022, 13(4): 101408. doi: 10.1016/j.gsf.2022.101408
A study of the NW Kakamas Domain in South Africa/Namibia provides a new, unified lithostratigraphy and evolutionary history applicable to the whole Namaqua Sector. The Mesoproterozoic history ranges from ~1350 Ma to 960 Ma, but isotopic evidence suggests it was built upon pre-existing Paleoproterozoic continental crust that extended west from the Archaean Craton. In eastern Namaqualand, early rift-related magmatism and sedimentation at ~1350 Ma occurred in a confined ocean basin. Subsequent tectonic reversal and subduction at ~1290–1240 Ma led to establishment of the Areachap, Konkiep and Kaaien Domains. In the Kakamas Domain, widespread deposition of pelitic sediments occurred at ~1220 Ma (Narries Group). These contain detrital zircons derived from proximal crust with ages between ~2020 Ma and 1800 Ma (western Palaeoproterozoic domains) and 1350–1240 Ma (eastern early Namaqua domains), suggesting pre-sedimentation juxtaposition. The pelites underwent granulite grade metamorphism at ~1210 Ma (peak conditions: 4.5–6 kbar and 770–850 ℃), associated with voluminous, predominantly S-type granitoid orthogneisses between ~1210 Ma and 1190 Ma (Eendoorn and Ham River Suites) and low-angle ductile (D2) deformation which continued until ~1110 Ma, interspersed with periods of sedimentation. This enduring P-T regime is inconsistent with the expected crustal over-thickening associated with the generally-accepted collision-accretion Namaqualand model. Rather, we propose the Namaqua Sector is a ‘hot orogen’ developed in a wide continental back-arc with subduction west of the present-day outcrop. The observed high geotherm resulted from thinned back-arc lithosphere accompanied by an influx of mantle-derived melts. Ductile D2 deformation resulted from “bottom-driven” tectonics and viscous drag within the crust by convective flow in the underlying asthenospheric mantle. This extended tectonothermal regime ceased at ~1110 Ma when SW-directed thrusting stacked the Namaqua Domains into their current positions, constrained in the Kakamas Domain by late- to post-tectonic I-type granitoids intruded between ~1125 Ma and 1100 Ma (Komsberg Suite). The thermal peak then shifted west to the Bushmanland and Aus Domains, where voluminous granites (1080–1025 Ma) were associated with high-T/low-P granulite facies thermal metamorphism and mega-scale open folding (D3). Unroofing of the Namaqua Sector is marked by large-scale, NW-trending, sub-vertical transcurrent dextral shear zones and associated pegmatites and leucogranites at ~990 Ma.
2.0 Ga orogenic graphite deposits and associated 13C-enriched meta-carbonate rocks from South China Craton: Implications for global Lomagundi event
Yihe Li, Madhusoodhan Satish-Kumar, Sasidharan Kiran, Chuanhui Wan, Jianping Zheng
2022, 13(4): 101409. doi: 10.1016/j.gsf.2022.101409
Abstract(230) HTML PDF(16)
The Lomagundi (-Jatuli) event, characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago, is pivotal in investigating the causes and consequences of great oxygenation event, inventory and sequestration of carbon on the Earth’s surface, evolution of life, and more profoundly tectonic control on Earth’s environment. However, the reasons that caused the isotopic excursion are not resolved yet. Herein, we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex, South China Craton. The δ13CV-PDB values for meta-carbonate rocks show positive values in the range from +5.5‰ to +11.6‰, whereas the δ13CV-PDB values of associated graphite deposits range from -25.8‰ to -9.5‰. Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average 207Pb/206Pb age of 2001.3 ±9.5 Ma, with corresponding εHf(t) range from -7.05 to -3.16, comparable to the values of local 2.9–2.6 Ga basement rocks. Geochemical characteristics of meta-carbonate rocks, such as their rare earth element patterns and the trace element parameters of La, Ce, Eu, and Gd anomalies and Y/Ho ratio, suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon. The extensive graphite deposits from Kongling Complex in South China Craton, their equivalents in the North China Craton and elsewhere across the globe prove that the burial of 12C-enriched organic carbon has eventually resulted in the global enrichment of 13C in the atmospheric CO2, which is recorded in the marine carbonate rocks. Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure. Hence, the observed global shift could be directly related to the continent collision event in greater China, thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion. Moreover, the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.
Focus Paper
A review of SAGD technology development and its possible application potential on thin-layer super-heavy oil reservoirs
Guodong Cui, Ting Liu, Jingyu Xie, Guanghui Rong, Lihong Yang
2022, 13(4): 101382. doi: 10.1016/j.gsf.2022.101382
Abstract(235) HTML PDF(12)
Super-heavy oil is a significant unconventional energy source, and more than 30 years of research have shown that steam-assisted gravity drainage (SAGD) technology is suitable for thick super-heavy oil reservoirs. Recently, more and more thin-layer super-heavy oil reservoirs have been discovered in China, while their deep buried depth and serous heterogeneity make the existing SAGD technology difficult to apply, so it is urgent to improve the existing SAGD technology for the thin-layer super-heavy oil. To this end, this paper focuses on the enlightenment of field application in SAGD technology. Firstly, based on typical SAGD field projects, the development history of SAGD technology in the world was reviewed, and the influence of reservoir physical properties on the application of SAGD technology in thin-layer super-heavy oil reservoirs was analyzed. Secondly, the well pattern, wellbore structure, pre-heating, artificial lift, and monitor technique of SAGD were detailed described, and their adjustment direction was expounded for the development of thin-layer super-heavy oil reservoirs. Lastly, the gas- and solvent-assistant SAGD were comprehensively evaluated, and their application potential in thin-layer super-heavy oil reservoirs was studied. The research results can provide theoretical guidance for the application of SAGD technology in thin-layer super-heavy oil reservoirs.