Volume 10 Issue 4
Jan.  2021
Turn off MathJax
Article Contents
V. Balaram. Rare earth elements:A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
Citation: V. Balaram. Rare earth elements:A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005

Rare earth elements:A review of applications, occurrence, exploration, analysis, recycling, and environmental impact

doi: 10.1016/j.gsf.2018.12.005
  • Received Date: 2018-02-07
  • Rev Recd Date: 2018-10-17
  • Rare earth elements (REE) include the lanthanide series elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) plus Sc and Y. Currently these metals have become very critical to several modern technologies ranging from cell phones and televisions to LED light bulbs and wind turbines. This article summarizes the occurrence of these metals in the Earth's crust, their mineralogy, different types of deposits both on land and oceans from the standpoint of the new data with more examples from the Indian subcontinent. In addition to their utility to understand the formation of the major Earth reservoirs, multi-faceted updates on the applications of REE in agriculture and medicine including new emerging ones are presented. Environmental hazards including human health issues due to REE mining and large-scale dumping of e-waste containing significant concentrations of REE are summarized. New strategies for the future supply of REE including recent developments in the extraction of REE from coal fired ash and recycling from e-waste are presented. Recent developments in individual REE separation technologies in both metallurgical and recycling operations have been highlighted. An outline of the analytical methods for their precise and accurate determinations required in all these studies, such as, Xray fluorescence spectrometry (XRF), laser induced breakdown spectroscopy (LIBS), instrumental neutron activation analysis (INAA), inductively coupled plasma optical emission spectrometry (ICP-OES), glow discharge mass spectrometry (GD-MS), inductively coupled plasma mass spectrometry (including ICP-MS, ICP-TOF-MS, HR-ICP-MS with laser ablation as well as solution nebulization) and other instrumental techniques, in different types of materials are presented.
  • loading
  • [1]
    Al-Rimawi, F., Kanan, K., Qutob, M., 2013. Analysis of different rare metals, rare earth elements, and other common metals in groundwater of South West Bank/
    Palestine by ICP/MS-data and health aspects. Journal of Environmental Protection 4, 1157-1164.
    Alharbi, A., El-Taher, A., 2016. Elemental analysis of basalt by instrumental neutron activation analysis and inductively coupled plasma mass spectrometer. Journal of Environment Science and Technology 9 (4), 335-339.
    Ali, S.H., 2014. Social and environmental impact of the rare earth industries. Resources 3 (1), 123-134.
    Alvin, M.A., Granite, E., Miller, C., 2017. The future of rare earth elements may lie with coal. American Coal 2, 28-32.
    Amaral, C.D.B., Machado, R.C., Barros, J.A.V.A., Virgilio, A., Schiavo, D., Nogueira, A.R.A., Nóbrega, J.A., 2017. Determination of rare earth elements in geological and agricultural samples by ICP-OES. Spectroscopy 32 (10), 32-36.
    Andreev, P.A., Abramov, V.V., Makarova, S.F., 1974. Optimal conditions for complexometric determination of the concentration of rare-earth elements in glasses. Glass and Ceramics 31 (11), 824-826.
    Baidya, T.K., Mondal, S.K., Balaram, V., Parthasarathi, R., Verma, R., Mathur, P.K., 1999. PGE-Ag-Au mineralisation in a Cu-Fe-Ni sulphide-rich breccia zone of the Precambrian Nuasahi ultramafic-mafic complex, Orissa, India. Journal of the Geological Society of India 54, 473-482.
    Baker, J., Waight, T., Ulfbeck, D., 2002. Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 66 (20), 3635-3646.
    Balaram, V., 1995. Developments and trends in inductively coupled plasma mass spectrometry and its influence on the recent advances in trace element analysis. Current Science 69, 640-649.
    Balaram, V., 1996. Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry 15, 475-486.
    Balaram, V., 2016a. Current advances in the miniaturization of analytical instruments-applications in cosmochemistry, geochemistry, exploration and environmental sciences. Spectroscopy 31 (10), 40-44.
    Balaram, V., 2016b. Recent advances in the determination of elemental impurities in pharmaceuticals - status, challenges and moving frontiers. Trends in Analytical Chemistry 80, 83-95.
    Balaram, V., 2017. Field-portable analytical instruments in mineral exploration:past, present and future. Journal of Applied Geochemistry 19 (4), 382-399.
    Balaram, V., 2018. Recent advances and trends in ICP mass spectrometry and applications. Spectroscopy 16 (2), 8-13.
    Balaram, V., Rao, T.G., 2003. Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy 24 (6), 206-212.
    Balaram, V., Anjaiah, K.V., Reddy, M.R.P., 1995. A comparative study on the trace and rare earth element analysis of an Indian polymetallic nodule reference sample by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Analyst 120, 1401-1406.
    Balaram, V., Banakar, V.K., Subramanyam, K.S.V., Roy, P., Satyanarayanan, M., Mohan, M.R., Sawant, S.S., 2012. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean. Current Science 103 (11), 1334-1338.
    Balaram, V., Dharmendra, V., Roy, P., Taylor, C., Kar, P., Raju, A.K., Krishnaiah, A., 2013a. Determination of precious metals in rocks and ores by microwave plasma-atomic emission spectrometry (MP-AES) for geochemical prospecting.Current Science 104 (9), 1207-1215.
    Balaram, V., Satyanarananan, M., Murthy, P.K., Mohapatra, C., Prasad, K.L., 2013b.Quantitative multi-element analysis of cobalt crust from Afanasy-Nikitin Seamount in the North Central Indian Ocean by inductively coupled plasma time-of-flight mass spectrometry. MAPAN Journal of Metrology Society of India 28 (2), 63-77.
    Balaram, V., Dharmendra, V., Roy, P., Taylor, C., Kamala, C.T., Satyanarayanan, M., Kar, P., Subramanyam, K.S.V., Raju, A.K., Krishnaiah, A., 2014. Analysis of geochemical samples by microwave plasma-AES. Atomic Spectroscopy 35 (2), 65-78.
    Banakar, V.K., Borole, D.V., 1991. Depth profiles of 230Th excess, transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for paleo-oceanographic influence on crust genesis. Chemical Geology 94, 33-44.
    Banerjee, A., Varughese, S.K., Kumar, K., Purohit, R.K., Rai, A.K., 2014. REE-U-Nb-ZrMo mineralization in Caldera setting, Siwana Ring complex. In:Barmer District, Rajastan, INS, 25th Annual Conference-INSAC-2014, pp. 89-91.
    Barakos, G., 2017. An Assessment Tool for the Mineability of Rare Earth Element Deposits. Ph.D. Diss.. Technical University Bergakademie Freiberg, Germany.
    Barakos, G., Mischo, H., Gutzmer, J., 2015. Rare earth underground mining approaches with respect to radioactivity control and monitoring strategies. In:Borges de Lima, I., Filho, W.L. (Eds.), Rare Earths Industry:Technological, Economic, and Environmental Implications. Elsevier, Amsterdam, pp. 121-138.
    Barakos, G., Mischo, H., Gutzmer, J., 2018. A forward look into the US rare-earth industry; How potential mines can connect to the global REE market? Mining Engineering 30-37.
    Battsengel, A., Batnasan, A., Haga, K., Shibayama, A., 2018. Selective separation of light and heavy rare earth elements from the pregnant leach solution of apatite ore with D2EHPA. Journal of Minerals and Materials Characterization and Engineering 6, 517-530.
    Bau, M., Knappe, A., Dulski, P., 2006. Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States.Chemie der Erde Geochemistry 66 (2), 143-152. http://doi.org/doi: 10.1016/j.chemer.2006.01.002.
    Becker, J.S., Dietze, H.J., 2003. State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials. International Journal of Mass Spectrometry 228, 127-150.
    Bentlin, F.R.S., Pozebon, D., 2010. Direct determination of lanthanides in environmental samples using ultrasonic nebulization and ICP OES. Journal of the Brazilian Chemical Society 21 (4), 627-634.
    Bhatt, C.R., Jain, J.C., Goueguel, C.L., McIntyre, D.L., Singh, J.P., 2018. Determination of rare earth elements in geological samples using laser-induced breakdown spectroscopy (LIBS). Applied Spectroscopy 72 (1), 114-121.
    Bhushan, S.K., 2015. Geology of the Kamthai rare earth deposit. Journal of the Geological Society of India 85, 537-546.
    Bhushan, S.K., Kumar, A., 2013. First Carbonatite hosted REE deposit from India.Journal of the Geological Society of India 81, 41-60.
    Bhushan, S.K., Somani, O.P., 2019. Rare earth elements and yttrium potentials of Neoproterozoic peralkaline Siwana granite of Malani igneous suite, Barmer district, Rajasthan. Journal of the Geological Society of India (in press).
    Birka, M., Roscher, J., Holtkamp, M., Sperling, M., Karst, U., 2016a. Investigating the stability of gadolinium-based contrast agents towards UV radiation. Water Research 91, 244-250. https://doi.org/10.1016/j.watres.2016.01.012.
    Birka, M., Wehe, C.A., Hachmölle, O., Sperling, M., Karst, U., 2016b. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. Journal of Chromatography A 1440, 105-111.https://doi.org/10.1016/j.chroma.2016.02.050.
    Bogart, J.A., Lippincott, C.A., Carroll, P.J., Schelter, E.J., 2015. An operationally simple method for separating the rare-earth elements neodymium and dysprosium.Angewandte Chemie International Edition 54, 8222-8225.
    Bogarta, J.A., Colea, B.E., Boreena, M.A., Lippincotta, C.A., Manora, B.C., Carrolla, P.J., Scheltera, E.J., 2016. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.PNAS 113 (52), 14887-14892.
    Bott, A.W., 1995. Voltammetric determination of trace concentrations of metals in the environment. Current Separations 14, 24-30.
    Bounouira, H., Choukri, A., Rajaa, C.E., Hakam, O.K., Chakiri, S., 2007. Distribution of the rare earth elements in the sediments of the Bouregreg river (Morocco) using the instrumental neutron activation analysis (INAA). Journal of Applied Sciences and Environmental Management 11 (1), 57-60.
    Bradshaw, N., Hall, E.F.H., Sanderson, N.E., 1989. Inductively coupled plasma as an ion source for high resolution mass spectrometry. Journal of Analytical Atomic Spectrometry 4, 801-803.
    Bu, W.R., Shi, X.F., Peng, J.T., 2003. Geochemical characteristics of seamount ferromanganese nodules from mid-Pacific Ocean. Chinese Science Bulletin 48, 98-105.
    Castor, S.B., Hendrik, J.B., 2006. Rare earth elements. In:Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T. (Eds.), Industrial Minerals and Rocks:commodities, Markets, and Uses, vol. 7. Society for Mining Mineralogy, United States, pp. 769-792.
    Chausseau, M., Stankova, A., Li, Z., Hunault, P., Savadkouei, H., 2014. High-resolution ICP-OES for the determination of trace elements in a rare earth element matrix and in NdFeB magnetic materials. Spectroscopy 29 (11), 30-39.
    Clarice, D.B.A., Raquel, C.M., Juan, A.V.A.B., Alex, V., Schivo, D., Ana, R.A.N., Joaquim, A.N., 2017. Determination of rare earth elements in geological and agricultural samples by ICP-OES. Spectroscopy 32 (10), 32-36.
    CMI, 2018. US and European labs advance recovery technologies. https://resourcerecycling.com/e-scrap/2018/03/29/us-and-european-labs-advance-recoverytechnologies/.
    Cremers, D.A., Radziemski, L.J., 2006. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Ltd. ISBN:0-470-09299-8.
    Cui, Y., Liu, J., Ren, X., Shi, X., 2009. Geochemistry of rare earth elements in cobaltrich crusts from the Mid-Pacific M seamount. Journal of Rare Earths 27 (1), 169-176.
    Dai, S., Grahamc, I.T., Ward, C.R., 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology 159, 82-95.
    Dar, S.A., Khan, K.F., Khan, S.A., Mir, A.R., Wani, H., Balaram, V., 2014. Uranium (U) concentration and its genetic significance in the phosphorites of the Paleoproterozoic Bijawar Group of the Lalitpur district, Uttar Pradesh, India. Arabian Journal of Geosciences 7, 2237-2248.
    Date, A., Gray, A., 1985. Determination of rare earth elements in geological samples by inductively coupled plasma source mass spectrometry. Spectrochimica Acta Part B Atomic Spectroscopy 40 (1-2), 115-122.
    De Vito, I.E., Olsina, R.A., Masi, A.N., 2000. Enrichment method for trace amounts of rare earth elements using chemo-filtration and XRF determination. Fresenius' Journal of Analytical Chemistry 368 (4), 392-396.
    Dey, A., Hussain, M.F., Barman, M.N., 2018. Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India:implications for petrogenesis. Geoscience Frontiers 9, 517-529.
    Diatloff, E., Smith, F.W., Asher, C.J., 1995. Rare earth elements and plant growth-third responses of corn and mungbean to low concentrations of cerium in dilution, continuously flowing nutrient solutions. Journal of Plant Nutrition 18, 1991-2003.
    Doroshkevich, A.G., Viladkar, S.G., Ripp, G.S., Burtseva, M.M.V., 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist 47, 1105-1116. https://doi.org/10.3749/canmin.47.5.1105.
    Dostal, J., 2017. Rare earth element deposits of alkaline igneous rocks. Resources 6(34), 1-2.
    Dutt, T., Kim, K.H., Uchimiya, M., Kwon, E.E., Jeon, B.H., Deep, A., Yun, S.T., 2016.Global demand for rare earth resources and strategies for green mining. Environmental Research 50, 182-190.
    Emsbo, P., McLaughlin, P.I., Breit, G.N., du Bray, E.A., Koenig, A.E., 2015. Rare earth elements in sedimentary phosphate deposits:solution to the global REE crisis?Gondwana Research 27, 776-785.
    Fang, H., Cole, B.E., Qiao, Y., Bogart, J.A., Cheisson, T., Manor, B.C., Carroll, P.J., Schelter, E.J., 2017. Electro-kinetic separation of rare earth elements using a redox-active ligand. Angewandte Chemie International Edition 56, 13450-13454.
    Figuelredo, A.M.G., Marques, L.S., 1989. Determination of rare earth elements and other trace elements in Brazilian geological standards, BB-1 and GB-1 by neutron activation analysis. Geochimica Brasiliensis 3 (1), 1-8.
    Flanagan, F.J., Gottfried, D., 1980. USGS Rock Standards; III, Manganese-Nodule Reference Samples USGS-Nod-A-1 and USGS-Nod-P-1, U.S, vol. 1155. Geological Survey Professional Paper, pp. 36-39.
    Franus, W., Wiatros-Motyka, M.M., Wdowin, M., 2015. Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research 22, 9464-9474.
    Fu, F., Akagi, T., Yabuki, S., Iwaki, M., 2001. The variation of REE (rare earth elements)patterns in soil-grown plants:a new proxy for the source of rare earth elements and silicon in plants. Plant and Soil 235, 53-64.
    Gonzalez, F.J., Somoza, L., Maldonado, A., Lunar, R., Martinez-Frias, J., MartinRubi, J.A., Carrion, M.C., 2010. High technology elements in Co-rich ferromanganese crusts from the Scotia sea. Revista de la Sociedad Española de Mineralogía 13, 113-114.
    Graede, T., 2015. Metals used in high-tech products face future supply risks. PNAS.https://phys.org/print346672145.html.
    Gray, A.L., 1985. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst 110, 551-556.
    Greenfield, S., Jones, I.L.I., Berry, C.T., 1964. High pressure plasmas as spectroscopic emission sources. Analyst 89, 713-720.
    Gulani, V., Calamante, F., Shellok, F.G., Kanal, E., Reeder, S.B., 2017. Gadolinium deposition in the brain:summary of evidence and recommendations. The Lancet Neurology 16 (7), 564-570.
    Guo, B.S., Zhu, W.M., Xiong, P.K., Ji, Y.J., Liu, Z., Wu, Z.M., 1988. Rare Earths in Agriculture. Agricultural Scientific Technological Press, Beijing, China, pp. 23-208.
    Gupta, C.K., Krishnamurthy, N., 2005. Extractive Metallurgy of Rare Earths. CRC Press, Boca Raton, Florida, US, p. 484.
    Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E., 2018.Sources, behaviour, and environmental and human health risks of hightechnology rare earth elements as emerging contaminants. The Science of the Total Environment 636, 299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235.
    Hammer, M.R., 2008. A magnetically excited microwave plasma source for atomic emission spectroscopy with performance approaching that of the inductively coupled plasma. Spectrochimica Acta Part B 63, 456-464.
    Haque, N., Hughes, A., Lim, S., Vernon, C., 2014. Rare earth elements:overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3, 614-635.
    Hatje, V., Bruland, K.W., Flegal, A.R., 2016. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20-year record. Environmental Science and Technology 50, 4159-4168. https://doi.org/10.1021/acs.est.5b04322.
    Haxel, G.B., Hedrick, J.B., Orris, G.J., 2002. Rare Earth Elements - Critical Resources for High Technology. USGS Fact Sheet 087-02.
    Hein, J.R., Conrad, T.A., Staudigel, H., 2010. Seamount mineral deposits, a source of rare-metals for high technology industries. Oceanography 23, 184-189.
    Helmeczi, E., Wang, Y., Brindle, I.D., 2016. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry. Talanta 160, 521-527.
    Houk, R.S., Fassel, V.A., Flesch, G.D., Svec, H.J., Gray, A.L., Taylor, C.E., 1980. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Analytical Chemistry 52, 2283-2289.
    Hower, J.C., Granite, E.J., Mayfield, D.B., Lewis, A.S., Finkelman, R.B., 2016. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Minerals 6 (32), 1-9.
    IAEA, 2011. International Atomic Energy Agency:Radiation Protection and NORM Residue Management in the Production of Rare Earths from Thorium Containing Minerals. International Atomic Energy Agency, Vienna.
    IBM Report, 2018. Rare Earths, Indian Minerals Yearbook 2017, Part III:Mineral Reviews, 56th ed. Indian Bureau of Mines, Nagpur, India, p. 7.
    Ingri, I., Ponter, C., 1987. Rare earth abundance patterns in ferromanganese concretions from the Gulf of Bothnia and the Barents Sea. Geochimica et Cosmochimica Acta 51, 155-161.
    Ireland, T.R., Clement, S., Compston, W., Foster, J.J., Holden, P., Jenkins, B., Lanc, P., Schram, N., Williams, I.S., 2008. Development of SHRIMP. Australian Journal of Earth Sciences 55 (6-7), 937-954.
    Izatt, R.M., Izatt, S.R., Izatt, N.E., Krakowiak, K.E., Bruening, R.L., Navarro, L., 2015.Industrial applications of molecular recognition technology to green chemistry separations of platinum group metals and selective removal of metal impurities from process streams. Green Chemistry 17, 2236-2245.
    Izatt, R.M., Izatt, S.R., Izatt, N.E., Bruening, R.L., Krakowiak, K.E., 2017. Green chemistry molecular recognition processes applied to metal separations in ore beneficiation, element recycling, metal remediation, and elemental analysis. In:Beach, E.S., Kundu, S. (Eds.), Handbook of Green Chemistry Volume 10:Tools for Green Chemistry, first ed. Wiley-VCH Verlag, Weinheim, Germany, pp. 189-240.
    Izatt, S.R., Bruening, R.L., Krakowiak, K.E., Izatt, R.M., 2018. Molecular recognition technology:green chemistry separation and recovery of individual rare earth elements from primary and secondary sources. In:Proc. International Conference on Science and Technology of Rare Earths, 23-25, September, Tirupati, AP, India, pp. 7-8.
    Jarvis, I., 1994. Phosphorite geochemistry:state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae 87, 643-700.
    Jarvis, I., Jarvis, K.E., 1985. Rare-earth element geochemistry of standard sediments:a study using inductively coupled plasma spectrometry. Chemical Geology 53, 335-344.
    Jochum, K.P., Seufert, H.M., Midinet-Best, S., Rettmann, E., Schönberger, K., Zimmer, M., 1988. Multi-element analysis by isotope dilution-spark source mass spectrometry (ID-SSMS). Fresenius' Zeitschriftfüranalytische Chemie 331, 104-110.
    John, F., Jeremy, R., Jinesh, J., Kerrich, R., Fan, J., 1993. A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chemical Geology 106, 229-249.
    Juras, S.,J., Hickson, C.J., Horsky, S.J., Godwin, C.I., Mathews, W.H., 1987. A practical method for the analysis of rare-earth elements in geological samples by graphite furnace atomic absorption and X-ray fluorescence. Chemical Geology 64 (1-2), 143-148.
    Kamal, C.T., Balaram, V., Dharmendra, V., Roy, P., Satyanarayanan, M., Subramanyam, K.S.V., 2014. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city. Environmental Monitoring and Assessment 186, 7097-7113.
    Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience 4, 535-539.
    Kent, A.R.J., Jacobsen, B., Peate, D.W., Waight, T.E., Baker, J., 2004. Isotope dilution MC-ICP-MS rare earth element analysis of geochemical reference materials, NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2, BCR-2G, JB-2WS-E, W-2, AGV-1 and AGV-2. Geostandards and Geoanalytical Research 28(3), 417-429.
    Khan, K.F., Dar, S.A., Khan, S.A., 2012. Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India. Journal of Rare Earths 30 (5), 507-514.
    King, F.L., Teng, J., Steiner, R.E., 1995. Glow discharge mass spectrometry:trace element determinations in solid samples. Journal of Mass Spectrometry 30, 1061-1075.
    Klinkhammer, G., German, C.R., Elderfield, H., Greaves, M.J., Mitra, A., 1994. Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry. Marine Chemistry 45 (3), 179-186.
    Kogarko, L.N., Kononova, V.A., Orlova, M.P., Woolley, A.R., 1995. Alkaline Rocks of the World, Part 2dFormer Soviet Union. Chapman & Hall, London, p. 226.
    Kolker, A., Scott, C., Hower, J.C., Vazquez, J.A., Lopano, C.L., Dai, S., 2017. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. International Journal of Coal Geology 184, 1-10.
    Krishna, K.S., Bull, J.M., Ishizuka, O., Scrutton, R.A., Jaishankar, S., Banakar, V.K., 2014.Growth of the Afanasy nikitin seamount and its relationship with the 85◦E ridge, northeastern Indian ocean. Journal of Earth System Science 123 (1), 33-47.
    Kulaksız, S., Bau, M., 2007. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters 260, 361-371.
    Kumari, A., Panda, R., Jha, M.K., Kumar, J.R., Lee, J.Y., 2015. Process development to recover rare earth metals from monazite mineral:a review. Minerals Engineering 79, 102-115.
    Lange, C.N., Figueiredo, A.M.G., Enzweiler, J., Castro, L., 2017. Trace elements status in the terrain of an impounded vehicle scrapyard. Journal of Radioanalytical and Nuclear Chemistry 311 (2), 1323-1332.
    Lawrence, M.G., Ort, C., Keller, J., 2009. Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Research 43/14, 3534-3540. https://doi.org/10.1016/j.watres.2009.04.033.
    Laznicka, P., 2010. Giant deposits:industry, economics, politics. In:Giant Metallic Deposits. Springer, Berlin, Heidelberg, pp. 703-724.
    Li, Y., Schieber, J., 2015. On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee d a combined sedimentologic, petrographic, and geochemical study. Sedimentary Geology 329, 40-61.
    Lichte, F.E., Meier, A.L., Crock, J.G., 1987. Determination of rare-earth elements in geological materials by inductively coupled plasma mass spectrometry.Analytical Chemistry 59, 1150-1157.
    Lide, D.R., 1997. Abundance of elements in the earth's crust and sea. In:CRC Handbook of Physics and Chemistry, 78th ed. CRC Press, Boca Raton, p. 14.
    Liu, Z., 1988. The effects of rare earth elements on growth of crops V. In:Pais, I. (Ed.), Proc. Int. Symp. New Results in the Research of Hardly Known Trace Elements and Their Role in Food Chain. University of Horticulture and Food Industry, Budapest, p. 23.
    Liu, Y.S., Hu, Z.C., Li, M., Gao, S.G., 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin 58 (32), 3863-3878.
    Machida, M., Ueno, M., Omura, T., Kurusu, S., Hinokuma, S., Nanba, T., Shinozaki, O., Furutani, H., 2017. CeO2-grafted MneFe oxide composites as alternative oxygenstorage materials for three-way catalysts:laboratory and chassis dynamometer tests. Industrial & Engineering Chemistry Research 56 (12), 3184-3193.
    Mahoney, P.P., Ray, S.J., Hieftje, G.M., 1997. Time of flight mass spectrometry for elemental analysis. Applied Spectroscopy 51, 16A-28A.
    Mancheri, N.A., 2015. World trade in rare earths, Chinese export restrictions, and implications. Resource Policy 46, 262-271.
    Maruyama, S., Hottori, K., Hirata, T., Suzuki, T., Danhara, T., 2016. Simultaneous determination of 58 major and trace elements in volcanic glass shards from the INTAV sample mount using femtosecond laser ablation-inductively coupled plasma-mass spectrometry. Geochemical Journal 50, 403-422. https://doi.org/10.2343/geochemj.2.0436.
    Masuda, A., Nakamura, N., Tanaka, T., 1973. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochimica et Cosmochimica Acta 37 (2), 239-248.
    Mayers, D.P., Hieftje, G.M., 1993. Preliminary design considerations and characteristics of an inductively coupled plasma-time-of-flight mass spectrometer.Microchemical Journal 48 (3), 259-277.
    Mazumdar, A., Banerjee, D.M., Schidlowski, M., Balaram, V., 1999. Rare-earth elements and stable isotope geochemistry of early cambrian chert-phosphorite assemblages from the lower tal formation of the krol belt lesser himalaya, India. Chemical Geology 156, 275-297.
    McDonald, J.W., Ghio, A.J., Sheehan, C.E., Bernhardt, P.F., Roggli, V.L., 1995. Rare earth(cerium oxide) pneumoconiosis:analytical scanning electron microscopy and literature review. Modern Pathology 8, 859-865.
    McDonald, R.J., McDonald, J.S., Kallmes, D.F., Jentoft, M.E., Murray, D.L., Thielen, K.R., Williamson, E.E., Eckel, L.J., 2015. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275 (3), 772-782.
    McLeod, C.L., Krekeler, M.P.S., 2017. Sources of extraterrestrial rare earth elements:to the Moon and beyond. Resources 6 (40), 1-28.
    Mihalasky, M.J., Tucker, R.D., Renaud, K., Verstraeten, I.M., 2018. Rare Earth Element and Rare Metal Inventory of Central Asia, p. 4. Fact Sheet 2017-3089. https://doi.org/10.3133/fs20173089.
    Muir, I.J., Bancroft, G.M., MacRae, N.D., Metson, B., 1987. Quantitative analyses of rare-earth elements in minerals by secondary ion mass spectrometry. Chemical Geology 64 (3-4), 269-278.
    Nakayama, K., Nakamura, T., 2005. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads. Analytical Sciences 21, 815-822.
    Nath, B.N., Balaram, V., Sudhakar, M., Pluger, W.L., 1992. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Marine Chemistry 38, 185-208.
    Nath, B.N., Roelandts, I., Sudhakar, M., Plüger, W.L., Balaram, V., 1994. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean. Marine Geology 120, 385-400.
    Nath, B.N., Rao, K.M., Rao, ChM., 2000. Rare-earth Elements and Uranium in Phosphatic Nodules from the Continental Margins of India. Marine Authigenesis:From Global to Microbial. SEPM (Society for Sedimentary Geology)Special Publication No. 66, pp. 221-232.
    Nguyen, R.T., Diaz, L.A., Imholte, D.D., Lister, T.E., 2017. Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process. JOM 69 (9), 1546-1552.
    Nieto, A., Zhang, K.Y., 2013. Cutoff grade economic strategy for byproduct mineral commodity operation:rare earth case study. Mining Technology 122 (3),166-171.
    Oliveira, S.M.B., Larizzatti, F.E., Fávaro, D.I.T., Moreira, S.R.D., Mazzilli, B.P., Piovano, E.L., 2003. Rare earth element patterns in lake sediments as studied by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 258 (3), 531-535.
    Onishi, H., Nagai, H., Toita, Y., 1962. Spectrophotometric determination of rare earth elements and thorium with arsenazo. Analytica Chimica Acta 26, 528-531.
    Palaparthi, J., Chakrabarti, R., Banerjee, S., Guin, R., Ghosal, S., Agrahari, S., Sengupta, D., 2017. Economically viable rare earth element deposits along beach placers of Andhra Pradesh, eastern coast of India. Arabian Journal of Geosciences 10, 201. https://doi.org/10.1007/s12517-017-2973-5.
    Pandey, L.P., 1992. Certificate of Analysis of Sample No 2388. CSIR-National Metallurgical Laboratory, Jamshedpur, India.
    Panichev, A.M., 2015. Rare earth elements:review of medical and biological properties and their abundance in the rock materials and mineralized spring waters in the context of animal and human geophagia reasons evaluation. Achievements in the Life Sciences 9, 95-103.
    Paropkari, A.L., Ray, D., Balaram, V., Prakash, L.S., Mirza, I.H., Satyanarayanan, M., Rao, T.G., 2010. formation of hydrothermal deposits at kings triple junction, northern lau back-arc basin, SW Pacific:the geochemical perspectives. Journal of Asian Earth Sciences 38, 121-130.
    Pathak, A.K., Khan, M., Gschneidner Jr., K.A., McCallum, R.W., Zhou, L., Sun, K., Denis, K.W., Zhou, C., Pinkerton, F.E., Kramer, M.J., Pecharsky, V.K., 2015. Cerium:an unlikely replacement of dysprosium in high performance NdeFeeB permanent magnets. Advanced Materials 27, 2663-2667.
    Paulick, H., Machacek, E., 2017. The global rare earth element exploration boom:an analysis of resources outside of China and discussion of development perspectives. Resources Policy 52, 134-153.
    Pavel, C.C., Lacal-Arántegui, R., Marmier, A., Schüler, D., Tzimas, E., Buchert, M., Jenseit, W., Blagoeva, D., 2017. Substitution strategies for reducing the use of rare earths in wind turbines. Resources Policy 52, 349-357.
    Pazand, K., 2015. Rare earth element geochemistry of coals from the Mazino coal mine, Tabas Coalfield, Iran. Arabian Journal of Geosciences 8 (12), 10859-10869.
    Philip, C.K., Anderson, C.G., 2018. The production of critical materials as by products.Aspects in Mineral Science 2 (2), 2-14. https://doi.org/10.31031/AMMS.2018.02.000532.
    Piper, D.Z., 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007-1022.
    Potts, P.J., Webb, C., 1992. X-ray fluorescence spectrometry. Journal of Geochemical Exploration 44 (1-3), 251-296.
    Pourmand, A., Dauphas, N., Ireland, T.J., 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y:revising CIchondrite and Post-Archean Australian Shale(PAAS) abundances. Chemical Geology 291, 38-54.
    Prakash, L.S., Ray, D., Paropkari, A.L., Mudholkar, A.V., Satyanarayanan, M., Sreenivas, B., Chandrasekharam, D., Kota, D., Raju, K.A.K., Kaisary, S., Balaram, V., Gurav, T., 2012. Distribution of REE and yttrium among major geochemical phases of marine Fe-Mn-oxides:comparative study between hydrogenous and hydrothermal deposits. Chemical Geology 312-313, 127-137.
    Rabiet, M., Brissaud, F., Seidel, J.L., Pistre, S., Elbaz-Poulichet, F., 2009. Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere 75, 1057-1064.
    Radziemski, L., Cremers, D., 2013. A brief history of laser-induced breakdown spectroscopy:from the concept of atoms to LIBS 2012. Spectrochimica Acta Part B Atomic Spectroscopy 87, 3-10.
    Raju, C.S.K., Cossmer, A., Scharf, H., Panne, U., Lück, D., 2010. Speciation of gadolinium-based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 25, 55-61.
    Rani, A., Mehra, R., Duggal, V., Balaram, V., 2013. Analysis of uranium concentration in drinking water samples using ICP-MS. Health Physics 104, 251-255.
    Rankin, P.C., Glasby, G.P., 1979. Regional distribution of rare earth and minor elements in manganese nodules and associated sediments in the southwest Pacific and other localities. In:Bischoffand, J.L., Piper, D.Z. (Eds.), Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum, New York, pp. 681-697.
    Ravisankar, R., Manikandan, E., Dheenathayalu, M., Rao, B., Seshadreean, N.P., Nair, K.G.M., 2006. Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA).Nuclear Instruments and Methods in Physics Research B 251, 496-500.
    Ray, J.S., Shukla, P.N., 2004. Trace element geochemistry of Amba Dongar carbonatite complex, India:evidence for fractional crystallization and silicatecarbonate melt immiscibility. Journal of Earth System Science 113 (4), 519-531.
    Reddy, V.M., Babu, K.S., Balaram, V., Satyanarayanan, M., 2012. Assessment of the effects of municipal sewage, immersed idols and boating on the heavy metal and other elemental pollution of surface water of the eutrophic Hussainsagar lake(Hyderabad, India). Environmental Monitoring and Assessment 184, 1991-2000.
    Redling, K., 2006. Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry. PhD Thesis. University of Munich, Germany, p. 360.
    Rim, K.T., 2016. Effects of rare earth elements on the environment and human health:a literature review. Toxicology in Environmental Health Science 8, 189-200. https://doi.org/10.1007/s13530-016-0276-y.
    Rim, K.T., 2017. A book review; "Rare earth elements in human and environmental health; at the crossroads between toxicity and safety". Applied Biological Chemistry 60 (3), 207-211.
    Rim, K.T., Koo, K.H., Park, J.S., 2013. Toxicological evaluations of rare earths and their health impacts to workers:a literature review. Safety and Health at Work 4 (1), 12-26.
    Sabbioni, E., Pietra, R., Gaglione, P., Vocaturo, G., Colombo, F., Zanoni, M., Rodi, F., 1982. Long-term occupational risk of rare-earth pneumoconiosis-a case report as investigated by neutron activation analysis. Science of the Total Environment 26, 19-32.
    Sahadev, R., Jyotilima, S., Subramanyam, K.S.V., Hower, J.C., Madison, M.H., Puja, K., Binoy, K.S., 2018. Geochemistry and nanomineralogy of feed coals and their coal combustion residues from two different coal-based industries in northeast India. Energy Fuels 32, 3697-3708.
    Sander, S.G., Koschinsky, A., 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience 4, 145-150.
    Sandstrom, A., Fredriksson, A., 2012. Apatite for Extraction Leaching of Kiirunavaaraapatite for Simultaneous Production of Fertilizers and REE, vol. XXVI.IMPC, pp. 4707-4714.
    Sano, Y., Terada, K., Hidaka, H., Nishio, Y., Amakawa, H., Nozaki, Y., 1999. Ionmicroprobe analysis of rare earth elements in oceanic basalt glass. Analytical Sciences 15, 743-748.
    Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V., Krishna, V., Dasaram, B., Manikyamba, C., 2018a. Rapid determination of REE, PGE and other trace elements in geological and environmental materials by HR-ICP-MS.Atomic Spectroscopy 39 (1), 1-15.
    Satyanarayanan, M., Rao, D.V.S., Renjith, M.L., Singh, S.P., Babu, E.V.S.S.K., Korakoppa, M.M., 2018b. Petrogenesis of carbonatitic lamproitic dykes from Sidhi gneissic complex, Central India. Geoscience Frontiers 9, 531-542.
    Saxena, O.C., 1970. Direct titrimetric determination of samarium and neodymium.Microchemical Journal 15 (1), 38-41.
    Singh, H., Sadiq, Md, Sharma, B.B., 2014. Exploration for rare earth elements in North East India. Current Science 107 (2), 178-180.
    Singh, T.D., Manikyamba, C., Subramanyama, K.S.V., Ganguly, S., Khelen, A.C., Reddy, N.R., 2018. Mantle heterogeneity, plume-lithosphere interaction at riftcontrolled ocean-continent transition zone:evidence from trace-PGE geochemistry of Vempalle flows, Cuddapah Basin, India. Geoscience Frontiers 9, 1809-1827.
    Smoliński, A., Stempin, M., Howaniec, N., 2016. Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-ray fluorescence. Spectrochimica Acta Part B Atomic Spectroscopy 116, 63-74.
    Sneller, F.E.C., Kalf, D.F., Weltje, L., Van Wezel, A.P., 2000. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REE).RIVM Report 601501011. National Institute of Public Health and the Environment, Bilthoven, The Netherlands, p. 66.
    Sowerbutts, L., 2017. https://www.geologyforinvestors.com/rare-earth-elementdeposits/.
    Sparks, D.L., 2005. Toxic metals in the environment:the role of surfaces. Elements 1, 193-197.
    Sprecher, B., Xiao, Y., Walton, A., Speight, J., Harris, R., Kleijn, R., Visser, G., Kramer, G.J., 2014. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environmental Science and Technology 48 (7), 3951-3958.
    Sreenivasulu, V., Kumar, N.S., Dharmendra, V., Asif, M., Balaram, V., Huang, Z.X., Zhen, Z., 2017. Determination of B, P and Mo in bio-sludge samples by microwave plasma atomic emission spectrometry (MP-AES). Applied Sciences Basel 7 (264), 1-10. https://doi.org/10.3390/app7030264.
    Sun, G.Y., Li, Z.G., Liu, T., Chen, J., Wu, T.T., Feng, X.B., 2017. Rare earth elements in street dust and associated health risk. Environmental Geochemistry and Health 39 (6), 1469-1486.
    Taggart, R.K., Hower, J.C., Hsu-Kim, H., 2018. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash.International Journal of Coal Geology 196, 106-114.
    Takahashi, T., Thornton, B., 2017. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids. Spectrochimica Acta Part B 138, 31-42.
    Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., Nakamura, K., Kimura, J., Chang, Q., Hamada, M., Dodbiba, G., Nozaki, T., Iijima, K., Morisawa, T., Kuwahara, T., Ishida, Y., Ichimura, T., Kitazume, M., Fujita, T., Kato, Y., 2018. The tremendous potential of deep-sea mud as a source of rareearth elements. Scientific Report 8 (5763), 8. https://doi.org/10.1038/s41598-018-23948-51.
    Tanaka, K., Takahashi, Y., Shimizu, H., 2007. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry:an examination of the influence of the matrix on laser-ablation inductivelycoupled plasma mass spectrometry analysis. Analytica Chimica Acta 583, 303-309.
    Tanaka, T., Lee, S.G., Kim, T., Han, S., Lee, H.M., Lee, S.R., Lee, J.I., 2018. Precise determination of 14 REE in GSJ/AIST geochemical reference materials JCp-1(coral) and JCt-1 (giant clam) using isotope dilution ICP-quadrupole mass spectrometry. Geochemical Journal 52 (1), 75-79.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:its Composition and Evolution. Blackwell Scientific Publication, Oxford, p. 312.
    Tepe, N., Romero, M., Bau, M., 2014. High-technology metals as emerging contaminants:strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012. Applied Geochemistry 45, 191-197.https://doi.org/10.1016/j.apgeochem.2014.04.006.
    Thomas, P.J., Carpenter, D., Boutin, C., Allison, J.E., 2014. Rare earth elements (REE):effects on germination and growth of selected crop and native plant species.Chemosphere 96, 57-66.
    Tupaz, C.A., Arcilla, C., Samosa, R., 2015. Comparison of microwave plasma atomic emission spectrometry (MP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the determination of scandium from Philippine laterite samples. In:(Abstract) 9th International Conference on the Analysis of Geological and Environmental Materials, Geoanalysis 2015, Leoben, Austria, p. 118.
    Tyler, G., 2004. Rare earth elements in soil and plant systems-a review. Plant and Soil 267, 191-206.
    U.S. Geological Survey, 2018. Mineral Commodity Summaries 2018. U.S. Geological Survey, Reston, Virginia, pp. 132-133. https://doi.org/10.3133/70194932.
    Valeton, I., 1972. Developments in soil science 1. In:Bauxites. Elsevier, Amsterdam, The Netherlands. ISBN 978-0-444-40888-4.
    Varbanova, E., Stefanova, V., 2015. A comparative study of inductively coupled plasma optical emission spectrometry and microwave plasma atomic emission spectrometry for the direct determination of lanthanides in water and environmental samples. Ecology and Safety 9, 362-374.
    Verplanck, P.L., Taylor, H.E., Nordstrom, D.K., Barber, L.B., 2005. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environmental Science and Technology 39, 6923-6929.
    Verplanck, P.L., Van Gosen, B.S., Seal, R.R., McCafferty, A.E., 2014. A Deposit Model for Carbonatite and Peralkaline Intrusion-Related Rare Earth Element Deposits.U.S. Geological Survey Scientific Investigations Report 2010-5070-J, p. 58.
    Vind, J., Malfliet, A., Blanpain, B., Tsakiridis, P.E., Tkaczyk, A.H., Vassiliadou, V., Panias, D., 2018. Rare earth element phases in bauxite residue. Minerals 8 (77), 32. https://doi.org/10.3390/min8020077.
    Vukotić, P., 1983. Determination of rare earth elements in bauxites by instrumental neutron activation analysis. Journal of Radioanalytical Chemistry 78 (1), 105-115.
    Wakabayashi, T., Ymamoto, A., Kazaana, A., Nakano, Y., Nojiri, Y., Kashiwazaki, M., 2016. Antibacterial, antifungal and nematocidal activities of rare earth ions.Biological Trace Element Research 174 (2), 464-470.
    Wakita, H., Rey, P., Schmitt, R.A., 1971. Abundances of the 14 rare earth elements and 12 other elements in Apollo 12 samples. In:Levinson, A.A. (Ed.), Proceedings of the Second Lunar ScienceConference. MITPress, Cambridge, MA, pp. 1319-1329.
    Walder, A.J., Freedman, P.A., 1992. Isotopic ratio measurement using a double focusing magnetic sector mass analyzer with an inductively coupled plasma as an ion source. Journal of Analytical Atomic Spectrometry 7, 571-575.
    Wall, F., Mariano, A.N., 1996. Rare earth minerals in carbonatites:a discussion centered on the Kangankunde Carbonatite, Malawi. In:Jones, A.P., Wall, Frances, Williams, C.T. (Eds.), Rare Earth Minerals-Chemistry, Origin and Ore Deposits.Chapman and Hall. The Mineralogical Society Series 7, New York, pp. 193-225.
    Walsh, J.N., Buckley, F., Barker, J., 1981. The simultaneous determination of the rareearth elements in rocks using inductively coupled plasma source spectrometry.Chemical Geology 33, 141-153.
    Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217-1232.
    Wei, B.G., Li, Y.H., Li, H.R., Yu, J.P., Ye, B.X., Liang, T., 2013. Rare earth elements in human hair from a mining area of China. Ecotoxicology and Environmental Safety 96, 118-123.
    Wendt, R.H., Fassel, V., 1965. Inductively-coupled plasma spectrometric excitation source. Analytical Chemistry 37, 920-922.
    Wengert, G.B., Walker, R.C., Loucks, M.F., Stenger, V.A., 1952. Gravimetric determination of thorium and rare earth elements in magnesium alloys. Analytical Chemistry 24 (10), 1636-1638.
    Wilburn, D.R., Karl, N.A., 2018. Exploration review. Mining Engineering 70 (5), 28-50.
    Wu, W.Q., Xu, T., Hao, Q., Wang, Q., Zhang, S.J., Zhao, C.Y., 2010. Applications of X-ray fluorescence analysis of rare earths in China. Journal of Rare Earths 28 (1), 30-36.
    Yasukawa, K., Nakamura, K., Fujinaga, K., Machida, S., Ohta, J., Takaya, Y., Kato, Y., 2015. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean:implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochemical Journal 49 (6), 621-635. https://doi.org/10.2343/geochemj.2.0361.
    Yoon, H.K., Moon, H.S., Park, S.H., Song, J.S., Lim, Y., Kohyama, N., 2005. Dendriform pulmonary ossification in a patient with rare earth pneumoconiosis. Thorax 60, 701-703.
    Zeng, Z.G., Ma, Y., Yin, X.B., Selby, D., Kong, F.C., Chen, S., 2015. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems. Geochemistry, Geophysics, Geosystems 16, 2679-2693.https://doi.org/10.1002/2015GC005812.
    Zepf, V., 2013. Rare earth elements:what and where they are. In:Rare Earth Elements. Springer, Berlin, Heidelberg, pp. 11-39. Springer Theses (Recognizing Outstanding Ph.D. Research). https://doi.org/10.1007/978-3-642-35458-8_2.
    Zhang, H., Feng, J., Zhu, W.F., Liu, C.Q., Gu, J.H., 2000a. Bacteriostatic effect of ceriumhumic acid complex:an experimental study. Biological Trace Element Research 73 (1), 29-36.
    Zhang, J., Cheng, H., Gao, Q., Zhang, Z.L., Liu, Q.D., 2000b. Effect of Lanthanum on growth and biochemical property of Sclerotinia sclerotiorum. Chinese Journal of Applied Ecology 11 (6), 382-384 (in Chinese with English abstract).
    Zhong, Y., Chen, Z., Gonzalez, F.J., Zheng, X., Li, G., Luo, Y., Mo, A., Xu, A., Wang, S., 2018. Rare earth elements and yttrium in ferromanganese deposits from the South China Sea:distribution, composition and resource considerations. Acta Oceanologica Sinica 37 (7), 41-54. https://doi.org/10.1007/s13131-018-1205-5.
    Zhu, Y., Hoshino, M., Yamada, H., Itoh, A., Haraguchi, H., 2004. Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya city. Bulletin of the Chemical Society of Japan 77, 1835-1842.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1214) PDF downloads(138) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint