Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Joice Dias de Moraes, Pedro Cordeiro, Eduardo Abrahão Filho, Juliana Rezende Oliveira, Carlos Victor Rios da Silva Filho. Metamorphic disturbances of magnetite chemistry and the Sm-Nd isotopic system of reworked Archean iron formations from NE Brazil[J]. Geoscience Frontiers, 2022, 13(5): 101131. doi: 10.1016/j.gsf.2020.11.018
Citation: Joice Dias de Moraes, Pedro Cordeiro, Eduardo Abrahão Filho, Juliana Rezende Oliveira, Carlos Victor Rios da Silva Filho. Metamorphic disturbances of magnetite chemistry and the Sm-Nd isotopic system of reworked Archean iron formations from NE Brazil[J]. Geoscience Frontiers, 2022, 13(5): 101131. doi: 10.1016/j.gsf.2020.11.018

Metamorphic disturbances of magnetite chemistry and the Sm-Nd isotopic system of reworked Archean iron formations from NE Brazil

doi: 10.1016/j.gsf.2020.11.018
Funds:

This work was supported by the National Council for the Improvement of Higher Education (CAPES) and the Brazilian Council for Research and Technological Development (CNPQ), which granted an MSc scholarship to the first author. The University of Brasí

lia is gratefully acknowledged for fieldwork support and access to laboratory facilities. We are also grateful for the editorial handling of our manuscript by Nick Roberts and the contribution of three anonymous reviewers who made themselves available to help us improve our manuscript in the middle of a global pandemic.

  • Received Date: 2020-05-30
  • Accepted Date: 2020-11-26
  • Rev Recd Date: 2020-09-30
  • Publish Date: 2020-12-30
  • Iron formations are valuable archives of sedimentary conditions and post-depositional events. However, geochemical proxies commonly used to determine genetic characteristics can be variably modified during metamorphism and deformation, hampering their use as records of regional geological events. This work focuses on strongly reworked magnetite-quartz-rich rocks from the São José do Campestre Massif, one of the oldest fragments of preserved crust in South America. The genetic classification of these magnetite-quartz-rich rocks is not straightforward because primary assemblages and textures were variably modified by granulite facies metamorphism during a regional Paleoproterozoic migmatization event. To address genetic ambiguities, we analyzed their magnetite and pyroxene chemistry, whole-rock geochemistry, and Sm-Nd isotopes. Magnetite chemistry indicates that pyroxene-poor iron formations (Type B) are low in trace elements such as Ti, Al, V, and Mn, suggesting a chemical similarity to iron formations elsewhere. In contrast, magnetites from pyroxene-enriched Type A iron formations are rich in trace elements and more akin to magnetite crystallized from higher temperature systems, such as skarn and IOCG. The 147Sm/144Nd of these rocks show substantial variation even at the outcrop scale, indicating a locally-controlled, highly heterogeneous mixture of Archean, Paleoproterozoic, and Neoproterozoic sources. Therefore, our geochemical tools point out to heterogenous signatures of these magnetite-quartz rocks and proxies compatible with both low and high-temperature conditions and age of deposition spanning sources from the Archean to the Neoproterozoic. We interpret that the studied São José do Campestre magnetite-quartz rocks represent Archean iron formations with original magnetite chemistry and isotopic signatures variably modified by metamorphism and by at least one deformation-related hydrothermal event. These results contrast with similar examples from China and Greenland where iron formations either preserved the magnetite chemistry or the primary isotopic signatures. Our study indicates that metamorphism can selectively affect chemical proxies used to study iron formations and undermine the genetic classification of iron ores. Thus, these proxies should be carefully applied in the interpretation of syn-depositional environments of polydeformed belts.
  • loading
  • [1]
    Abrahão Filho, E.A.F., 2016. Tholeitic high-Fe mafic magmatism and the protolith of mesoarchean iron-rich exotic pyroxenitic rocks in São José do Campestre Massif, NE Brazil. (Unpublished Master's Dissertation)
    [2]
    AcmeLabs Services & Fees, 2009. Acme Analytical Laboratories Ltd., Acme analytical laboratories Ltd. Vancouver B. C. pp. 36
    [3]
    Alexander, B., Bau, M., Andersson, P., Dulski, P., 2008. Continentally-derived solutes in shallow Archean seawater:Rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta 72, 378-394
    [4]
    Alfimova, N., Razac, M.B., Felitsynb, S., Matrenicheva, V., E. Bogomolovb, E., Nasipuric, P., Saha, L., Patie, J.K., Kumar, V., 2019. Isotopic Sm-Nd signatures of Precambrian Banded Iron Formation from the Fennoscandian shield, East-European Platform, and Bundelkhand craton, India. Precambrian Research 328, 1-8
    [5]
    Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A., 1981. Brazilian Structural Provinces:an introduction. Earth-Science Reviews 17, 1-29
    [6]
    Barton, M.D., 2014. Iron Oxide (-Cu-Au-REE-P-Ag-U-Co) Systems. In:Holland, H.D., Tukerian, K.K. (Eds.), Earth Systems and Enviromental Sciences, Treatise on Geochemistry, pp. 515-536
    [7]
    Bau, M., 1993. Effects of syn- and post-depositional processes on the rare earth elemental distribution in Precambrian iron formations. European Journal of Mineralogy 5, 257-267
    [8]
    Bau, M., Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide:Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal 43, 37-47
    [9]
    Bau, M., Möller, P., 1992. Rare-earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45:231-246
    [10]
    Bekker, A., Slack, J.F., Planasvsky, N., Krapez, B., Hofmann, A., Konhauser, K.O., Rouxel, O., 2010. Iron formation:a sedimentary product of the complex interplay among mantle, tectonic, and biospheric processes. Society Economic Geology 105, 467-508
    [11]
    Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M. & Whitehouse, M.J., 2004. Characterisation of Early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222, 43-60
    [12]
    Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks. 8th ed., Springer, Berlin
    [13]
    Dantas, E.L., 1996. Geocronologia U-Pb e Sm-Nd de terrenos Arqueanos e paleoproterozóicos do Maciço Caldas Brandão, NE do Brasil (Unpublished Ph.D. Thesis). Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista-UNESP, Rio Claro, Brasil, 206 pp (in Portuguese)
    [14]
    Dantas, E.L., Hackspacher, P.C, Van Schmus, W.R., Brito Neves, B.B., 1998. Archean accretion in the São José do Campestre Massif, Borborema Province, Northeast Brazil. Revista Brasileira de Geociências 28, 221-228
    [15]
    Dantas, E.L., Souza, Z.S., Wernick, E., Hackspacher, P.C., Martin, H., Xiaodong, D., Li, J.W., 2013. Crustal growth in the 3.4 to 2.7 Ga. São José de Campestre Massif, Borborema Province, NE Brazil. Precambrian Research 227, 120-156
    [16]
    Dantas, E.L.; Van Schmus, W.R.; Hackspacher, P.C.; Fetter, A.H.; Brito Neves, B.B.; Cordani, U.; Nutman, A.P.; Williams, I.S., 2004. The 3.4-3.5 Ga São José do Campestre massif, NE Brazil:remnants of the oldest crust in South America. Precambrian Research 130, 113-137
    [17]
    Deer, W. A., Howie, R. A., Zussman, J., 1992. An introduction to the rock forming minerals, second ed. Prentice Hall, New York
    [18]
    DePaolo, D. J., 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholithys of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research 86, 10470-10488
    [19]
    Droop, G.T.R., 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431-435
    [20]
    Dupuis, C., Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace elemento fingerprinting of mineral deposit types. Mineralium Deposita 46, 319-335
    [21]
    Figueiredo, B.S., 2012. Geoquímica e Gênese das formações ferríferas e metacarbonatos da porção sul do Maciço São José do Campestre, Província Borborema (Unpublished Master's Dissertation). Instituto de Geociências, Universidade de Brasília-UnB
    [22]
    Frei, R., Bridgwate, R.D., Rosing, M., Stecher, O., 1999. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation:preservation of primary signatures versus secondary disturbances. Geochimica et Cosmochimica Acta 63, 473-488
    [23]
    Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Anais da Academia Brasileira de Ciencias 72, 219-245
    [24]
    Gross, G.A., 1993. Industrial and genetic models for iron ore in iron-formations. Geological Survey of Canada Special Papers 40, 151-170
    [25]
    Haugaard, R., Frei, R., Stendal, H., Konhauser, K., 2013. Petrology and geochemistry of the~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland:Source characteristics and depositional environment. Precambrian Research. 229, 150-176
    [26]
    Huang, B., Kuskya, T.M., Wanga, L., Denga, H., Wanga, J., Fua, D., Penga, H, Ninga, W., 2019. Age and genesis of the Neoarchean Algoma-type banded iron formations from the Dengfeng greenstone belt, southern North China Craton:Geochronological, geochemical and Sm-Nd isotopic constraints. Precambrian Research 333, 105437
    [27]
    Jardim de Sá, E.F., 1994. A Faixa Seridó (Província Borborema, NE Brasil) e o seu significado geodinâmico na cadeia Brasiliana/Pan-Africana (Unpublished Ph.D. Thesis). Instituto de Geociências, Universidade de Brasília-UnB (in Portuguese)
    [28]
    Kalczynski, M.J., Gates, A.E., 2014. Hydrothermal alteration, mass transfer and magnetite mineralization in dextral shear zones, western Hudson Highlands, New York, United States. Ore Geology Review. 61, 226-247
    [29]
    Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world:their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist 90, 1473-1499
    [30]
    Lan, C., Yang, A.Y., Wang, C.L., Zhao, T.P., 2019a. Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the Southern margin of the North China Craton:implications on Neoarchean seawater compositions and solute sources. Precambrian Research 326, 240-257
    [31]
    Lan, C., Zhao, T., Chen, W.T., Long, X., 2019b. Trace elemental modification in magnetite from high-grade metamorphosed BIFs in the Southern North China Craton. Ore Geology Rev. 112, 103019
    [32]
    McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223-253
    [33]
    Meinert L.D., Dipple G.M., Nicolescu S., 2005. World Skarn Deposits. Econ. Geol. 100th Anniversary Volume, 299-336
    [34]
    Mloszewska, A.M., Pecoits, E., Cates, N.L., Mojzsis, S.J., O'Neil, J., Robbins, L.J., Konhauser, K.O., 2012. The composition of Earth's oldest iron formations:the Nuvvuagittuq Supracrustal Belt (Quebec, Canada). Earth and Planetary Science Letters 317-318, 331-342
    [35]
    Murray, R.W., Buchholtz ten Brink, M.R., Gerlach, D.C., Russ III, G.P., Jones, D.L., 1992. Rare earth major and trace element compositions of Monterey and DSDP chert and associated host sediment, assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta 56, 2657-2671
    [36]
    Nadoll, P., Angerer, T., Mauk, J.L., French, D., Walshe, J., 2014. The chemistry of hydrothermal magnetite:A review. Ore Geology Reviews 61, 1-32
    [37]
    Nascimento, D, Leite, M.A., Galindo, A.C., Medeiros, V.C., 2015. Ediacaran to Cambrian magmatic suites in the Rio Grande Do Norte domain, extreme Northeastern Borborema Province (NE of Brazil):current knowledge. Journal of South American Earth Sciences 58, 281-299
    [38]
    Nutman, A. P., Bennett, V. C., Friend, C. R. L., 2017. Seeing through magnetite:Reassessing Eoarchean atmosphere composition from Isua (Greenland) ≥ 3.7 Ga banded iron formations. Geoscience Frontiers 8, 1233-1240
    [39]
    Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T. W., 2010. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited:New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta 74, 6387-6405
    [40]
    Silva Filho, C.V.R., 2012. Isotópos de Nd aplicados a datação direta de formações ferríferas paleoarqueanas do Maciço São José do Campestre (Unpublished Master's Dissertation). Instituto de Geociências, Universidade de Brasília-UnB (in Portuguese)
    [41]
    Souza, Z.S., Martin, H., Peucat, J.J., Sa, E.F.J., Macedo, M.H.F., 2007. Calc-alkaline magmatism at the Archean-Proterozoic transition:the Caico Complex Basement (NE Brazil). Journal of Petrology 48, 2149-2185
    [42]
    Sylvestre, G., Laure, N.T.E., Djibril, K.N.G., Arlette, D.S., Cyriel, M., Timoléon, N., Paul, N.J, 2017. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon:constraints from petrography and geochemistry. Ore Geology Reviews 80, 860-875
    [43]
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:its Composition and its Evolution, Blackwell, Oxford, 312 pp
    [44]
    Trompette, R., 1994. Geology of Western Gondwana (2000-500 Ma) Pan African-Brasiliano Aggregation of South America and Africa. Balkema, Rotterdam, pp. 350
    [45]
    Van Schmus, W.R., Brito Neves, B.B., Williams, I.S., Hackspacher, P.C., Fetter, A.H., Dantas, E.L., Babinski, M., 2003. The Seridó Group of NE Brazil, a late neoproterozoic preto syn-collisional basin in West Gondwana:insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Research 127, 287-327
    [46]
    Zhang, Z., Hou, T., Santosh, M., Li, H., Li, J., Zhang, Z., Song, X., Wang, M., 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview. Ore Geology Reviews 57, 247-263
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return