Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Lauro Cézar M. de Lira Santos, Geysson A. Lages, Fabrício A. Caxito, Elton L. Dantas, Peter A. Cawood, Haroldo M. Lima, Felipe J. da Cruz Lima. Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia[J]. Geoscience Frontiers, 2022, 13(5): 101167. doi: 10.1016/j.gsf.2021.101167
Citation: Lauro Cézar M. de Lira Santos, Geysson A. Lages, Fabrício A. Caxito, Elton L. Dantas, Peter A. Cawood, Haroldo M. Lima, Felipe J. da Cruz Lima. Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia[J]. Geoscience Frontiers, 2022, 13(5): 101167. doi: 10.1016/j.gsf.2021.101167

Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia

doi: 10.1016/j.gsf.2021.101167

This paper represents a later contribution of the first author PhD thesis. PAC acknowledges support from Australian Research Council grant FL160100168. This study was supported by the National Institute of Science and Technology for Tectonic Studies (INCT) of Brazil. Comments and criticism made by Dr. Henrique Bruno and an anonymous reviewer are appreciated as well as those from Kathryn Cutts and M. Santosh.

  • Received Date: 2020-08-26
  • Accepted Date: 2021-01-28
  • Rev Recd Date: 2021-01-25
  • Publish Date: 2021-02-08
  • The Alto Moxotó Terrane of the Borborema Province presents a wide exposure of Paleoproterozoic crust, but unlike other continental blocks of South America, its orogenic history is strongly obliterated by late Neoproterozoic deformation. New isotopic and geochemical studies were conducted in mafic-ultramafic (Fazenda Carmo Suite) and granitic-gneissic rocks (Riacho do Navio Suite) within the terrane. The former present zircon U-Pb crystallization ages at ca. 2.13 Ga, whereas Sm-Nd data suggests a juvenile origin via melting of early Paleoproterozoic to Archean peridotitic sources. Geochemical data for these rocks are compatible with tholeiitic magmas with some degree of crustal contamination and trace element distribution points to a continental-arc related setting interpreted as remnants of the early stages of subduction. In contrast, the Riacho do Navio Suite was emplaced at ca. 2.08 Ga and has highly negative εNd(t) values indicating crustal reworking. The suite displays calc-alkali to alkali-calcic and ferroan geochemical signatures compatible with Cordilleran magmas. In addition, trace-element distribution as well as discriminant diagrams suggest that the precursor magmas were generated during the later stages of a continental arc or in a syn-collisional setting. Based on our results, we suggest that the studied units might represent missing pieces of a Paleoproterozoic accretionary orogen that formed the crustal framework of the Alto Moxotó Terrane, and that this represents a block associated with assembly of the Nuna/Columbia supercontinent, which is now largely hidden within the Neoproterozoic orogenic belts of West Gondwana.
  • loading
  • [1]
    Alkmim, F.F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil:Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 90, 29-58. https://doi.org/10.1016/s0301-9268(98)00032-1
    Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces:An introduction. Earth-Sci. Rev. 17, 1-29. https://doi.org/10.1016/0012-8252(81)90003-9
    Almeida, C.N., Guimarães, I.P., Beurlen, H., Topitsch, W.M., Ferrer, D.M.M., 2009. Evidências de metamorfismo de alta pressão na faixa de dobramentos Pajeú-Paraíba, Província Borborema, nordeste do Brasil:petrografia e química mineral de rochas metamáficas. Rev. Bras. de Geoc. 29, 421-434. https://doi.org/10.25249/0375-7536.2009394421434 (in Portuguese)
    Ávila, C.A., Teixeira, W., Cordani, U.G., Moura, C.A.V., Pereira, R.M., 2010. Rhyacian (2.23-2.20 Ga) juvenile accretion in the southern São Francisco craton, Brazil:Geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt. J. South Am. Earth Sci. 29, 464-482. https://doi.org/10.1016/j.jsames.2009.07.009
    Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil:Geodynamic features. Precambrian Res. 133, 1-27. https://doi.org/10.1016/j.precamres.2004.03.001
    Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
    Batumike, J.M., Griffin, W.L., O'Reilly, S.Y., Belousova, E.A., Pawlitschek, M., 2009. Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo:Insights from zircon U-Pb ages, Hf-isotope and trace-element data. Precambrian Res. 170, 107-115. https://doi.org/10.1016/j.precamres.2008.12.001
    Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:implications for high field strength element depletions in island-arc basalts. Earth Planet. Sci. Lett. 128, 327-339. https://doi.org/10.1016/0012-821X(94)90154-6
    Brito Neves, B.B., 2011. The Paleoproterozoic in the South-American continent:Diversity in the geologic time. J. South Am. Earth Sci. 32, 270-286. https://doi.org/10.1016/j.jsames.2011.02.004
    Brito Neves, B.B., Silva Filho, A.F., 2020. O Superterreno Pernambuco-Alagoas na Província Borborema:ensaio de regionalização tectônica. Geo. USP-Sér. Cient. 18, 3-28, https://doi.org/11606/issn.2316-9095.v19-148257 (in Portuguese)
    Brito Neves, B.B., Santos, E.J., Schmus, W.R.Q., 2000. Tectonic history of the Borborema Province. In:Cordani, U., Milani, E.J., Filho, A.T., de Almeida Campos, D. (Eds.), Tectonic Evolution of South America Rio de Janeiro:31st International Geological Congress, Special Publication, pp. 151-182
    Brito Neves, B.B., Fuck, R.A., Pimentel, M.M., 2014. The Brasiliano collage in South America:A review. Braz. J. Geol. 44(3), 493-518. https://doi.org/10.5327/Z2317-4889201400030010
    Brito Neves, B.B., Santos, E.J., Fuck, R.A., Santos, L.C.M.L., 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Braz. J. Geol. 46(4), 491-508. https://doi.org/10.1590/2317-4889201620160004
    Bruno, H., Elizeu, V., Heilbron, N., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Dussin, I., Silva, L.G.E., Tupinambá, M., Almeida, J., Neto, C., Storey, C., 2020. Neoarchean and Rhyacian TTG-Sanukidoid suites in the southern São Francisco Paleocontinent, Brazil:Evidence for diachronous change towards modern tectonics. Geosci. Front. 12, 1763-1787. https://doi.org/10.1016/j.gsf.2020.01.015
    Bühn, B.M., Pimentel, M.M., Matteini, M., Dantas, E.L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). An. Acad. Bras. Ciênc. 81, 1-16. https://doi.org/10.1590/S0001-37652009000100011
    Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. Geol. Soc. Special Publications 318, 1-36. https://doi.org/10.1144/SP318.1
    Cawood, P.A., Leitch, E.C., Merle, R.E., Nemchin, A.A. 2011. Orogenesis without collision:Stabilizing the Terra Australis accretionary orogen, eastern Australia. Geol. Soc. of America Bulletin 123, 224-2255. https://doi.org/10.1130/B30415.1
    Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., 2018. Geological archive of the onset of plate tectonics. Phil. Trans. of the Royal Society A:Math., Phy. and Eng. Sci. 376, 2132. https://doi.org/10.1098/rsta.2017.0405
    Caxito, F.A., Uhlein, A., Stevenson, R., Uhlein, G.J., 2014a. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology 42, 387-390. https://doi.org/10.1130/G35479.1
    Caxito, F.A., Dantas, E.L., Stevenson, R., Uhlein, A., 2014b. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins related to collisional orogens:The case of the Rio Preto fold belt on the northwest São Francisco Craton margin, NE Brazil. Gondwana Res. 26, 741-754. https://doi.org/10.1016/j.gr.2013.07.007
    Caxito, F.A., Uhlein, A., Dantas, E.L., Stevenson, R., Pedrosa-Soares, A.C., 2015. Orosirian (ca. 1.96 Ga) mafic crust of the northwestern São Francisco Craton margin:Petrography, geochemistry and geochronology of amphibolites from the Rio Preto fold belt basement, NE Brazil. J. South Am. Earth Sci. 59, 95-111. https://doi.org/10.1016/j.jsames.2015.02.003
    Caxito, F.A., Uhlein, A., Dantas, E.L., Stevenson, R., Salgado, S.S., Dussin, I.A., Sial, A. da N., 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil:Implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Res. 282, 97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    Caxito, F.A., Hagemann, S., Dias, T.G., Barrote, V., Dantas, E.L., Oliveira, A.C., Campello, M.S., Campos, F.C., 2020a. A magmatic barcode for the São Francisco Craton:Contextual in-situ SHRIMP U Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos 374-375, 10578. https://doi.org/10.1016/j.lithos.2020.105708
    Caxito, F.A., Basto, C.F., Santos, L.C.M.L., Dantas, E.L., Medeiros, V.C., Gonçalves Dias, T., Barrote, V., Hagemann, S., Almim, A.R., Lana, C., 2021. Neoproterozoic magmatic arc volcanism in the Borborema Province, NE Brazil:possible flare-ups and lulls and implications for western Gondwana assembly. Gondwana Res. 91, 1-25. https://doi.org/10.1016/j.gr.2020.11.015
    Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Science 48, 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    Condie, K.C., 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46, 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
    Condie, K.C., 2007. Accretionary orogens in space and time. Memoir of the Geological Society of America 200, 145-158. https://doi.org/10.1130/2007.1200(09)
    Condie, K.C., Pisarevsky, S.A., Korenaga, J., Gardoll, S., 2015. Is the rate of supercontinent assembly changing with time? Precambrian Res. 259, 278-289 https://doi.org/10.1016/j.precamres.2014.07.015
    Costa, F.G., Palheta, E.S. de M., Rodrigues, J.B., Gomes, I.P., Vasconcelos, A.M., 2015. Geochemistry and U-Pb zircon ages of plutonic rocks from the Algodões granite-greenstone terrane, Troia Massif, northern Borborema Province, Brazil:Implications for Paleoproterozoic subduction-accretion processes. J. South Am. Earth Sci. 59, 45-68. https://doi.org/10.1016/j.jsames.2015.01.007
    Costa, F.G., Klein, E.L., Lafon, J.M., Milhomem Neto, J.M., Galarza, M.A., Rodrigues, J.B., Naleto, J.L.C., Corrêa Lima, R.G., 2018. Geochemistry and U-Pb-Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil:Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Res. 311, 167-194. https://doi.org/10.1016/j.precamres.2018.04.008
    D'Agrella-Filho, M.S., Bispo-Santos, F., Trindade, R.I.F., Antonio, P.Y.J., 2016. Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Braz. J. Geol. 46(2), 275-299. https://doi.org/10.1590/2317-4889201620160055
    Damian Nance, R., Brendan Murphy, J., 2013. Origins of the supercontinent cycle. Geosci. Front. 4, 439-448. https://doi.org/10.1016/j.gsf.2012.12.007
    Caxito, F. de A., Santos, L.C.M.L., Ganade, C.E., Bendaoud, A., Fettous, E.-H., Bouyo, M.H., 2020b. Toward an integrated model of geological evolution for NE Brazil-NW Africa:The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Braz. J. Geol. 502, e20190122. https://doi.org/10.1590/2317-4889202020190122
    DePaolo, D.J., 1981. Nd isotopic studies:some new perspectives on Earth structure and evolution. EOS 62, 137-145. https://doi.org/10.1029/EO062i014p00137-01
    De Waele, B., Johnson, S.P., Pisarevsky, S.A., 2008. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton:Its role in the Rodinia puzzle. Precambrian Res. 160, 127-141. https://doi.org/10.1016/j.precamres.2007.04.020
    DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3(5), 249-252. https://doi.org/10.1029/GL003i005p00249
    Ducea, M., 2001. The California arc:Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11, 4-10. https://doi.org/10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2
    Ennih, N., Liégeois, J.P., 2008. The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geol. Soc. Spec. Publ. 297, 1-17. https://doi.org/10.1144/SP297.1
    Ernst, R.E., Pereira, E., Hamilton, M.A., Pisarevsky, S.A., Rodriques, J., Tassinari, C.C.G., Teixeira, W., Van-Dunem, V., 2013. Mesoproterozoic intraplate magmatic "barcode" record of the Angola portion of the Congo Craton:Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res. 230, 103-118. https://doi.org/10.1016/j.precamres.2013.01.010
    Ferreira, A.C.D., Dantas, E.L., Fuck, R.A., Nedel, I.M., 2020. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil. Scie. Rep. 10, 7855. https://doi.org/10.1038/s41598-020-64688-9
    Fetter, A.H., Schmus, W.R. VAN, Santos, T.J.S. Nogueira Neto, J.A., Arthaud, M.H., 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil:Implications for the existence of the Paleoproterozoic Supercontinent "Atlantica". Rev. Bras. de Geoc. 3, 102-106. https://doi.org/10.25249/0375-7536.2000301102106
    Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta 64, 933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    Gaetani, G.A., Grove, T.L., 1998. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131(4), 323-346. https://doi.org/10.1007/s004100050396
    Ganade de Araujo, C.E., Rubatto, D., Hermann, J., Cordani, U.G., Caby, R., Basei, M.A.S., 2014a. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Com. 5, 5198. https://doi.org/10.1038/ncomms6198
    Ganade de Araujo, C.E., Weinberg, R.F., Cordani, U.G., 2014b. Extruding the Borborema Province (NE-Brazil):A two-stage Neoproterozoic collision process. Terra Nova 26(2), 157-168. https://doi.org/10.1111/ter.12084
    Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the geochronologylaboratory of the University of Brasília. An. Acad. Bras. Cienc. 72, 219-245. https://doi.org/10.1590/S0001-37652000000200009
    Grove, T.L., Chatterjee, N., Parman, S.W., Médard, E., 2006. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74-89. https://doi.org/10.1016/j.epsl.2006.06.043
    Hagen-Peter, G., Cottle, J.M., Tulloch, A.J., Cox, S.C., 2015. Mixing between enriched lithospheric mantle and crustal components in a short-lived subduction-related magma system, Dry Valleys area, Antarctica:Insights from U-Pb geochronology, Hf isotopes, and whole-rock geochemistry. Lithosphere 7(2), 174-188. https://doi.org/10.1130/L384.1
    Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Spec. Pub. 19, 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Kemp, T.I.S., 2017. Earth's Continental Lithosphere Through Time. Annu. Rev. Earth Plannet Sci. 45, 169-198. https://doi.org/10.1146/annurev-earth-063016-020525
    Heilbron, M., Cordani, U.G., Alkmim, F.F., 2017. The São Francisco Craton and Its Margins In:Heilbron, M., Cordani, U., Alkmim, F. (Eds), São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews. Springer, Cham, 3-13. https://doi.org/10.1007/978-3-319-01715-0_1
    Hollanda, M.H.B.M., Archanjo, C.J., Souza, L.C., Dunyi, L., Armstrong, R., 2011. Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. J. South Am. Earth Sci. 32(4), 287-300. https://doi.org/10.1016/j.jsames.2011.02.008
    Hollocher, K., Robinson, P., Walsh, E., Roberts, D., 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the støren nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway:A key to correlations and paleotectonic settings. Am. J. Sci. 312, 357-416. https://doi.org/10.2475/04.2012.01
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-548. https://doi.org/10.1139/e71-055
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laserablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircongeochronology. Chem. Geol. 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Klein, E.L., Moura, C.A.V., 2008. São Luís Craton and Gurupi belt (Brazil):Possible links with the West African Craton and surrounding Pan-African belts. Geological Society London Special Publications 294, 137-151. https://doi.org/10.1144/SP294.8
    Klein, E.L., Lopes, E.C.S., Rodrigues, J.B., Souza-Gaia, S.M., Cordani, U.G., 2020. Rhyacian and Neoproterozoic magmatic associations of the Gurupi Belt, Brazil:Implications for the tectonic evolution, and regional correlations. Geosci. Front. 11, 2243-2269. https://doi.org/10.1016/j.gsf.2020.02.016
    Klemme, S., Prowatke, S., Hametner, K., Günther, D., 2005. Partitioning of trace elements between rutile and silicate melts:implications for subduction zones. Geochi. Cosmochi. Acta 9, 2361-23711. https://doi.org/10.1016/j.gca.2004.11.015
    Lages, G.A., Santos, L.C.M.L., Brasilino, R.G., Rodrigues, J.B., Dantas, E.L., 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil:Implications for within-plate and coeval collisional tectonics in West Gondwana. J. South Am. Earth Sci. 91, 116-130. https://doi.org/10.1016/j.jsames.2019.02.003
    Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids:evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 28-235. https://doi.org/10.1016/j.lithos.2014.06.012
    Lima, H.M., Pimentel, M.M., Fuck, R.A., Santos, L.C.M.L., Dantas, E.L., 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt:Implications for the evolution of the Borborema Province, NE Brazil. J. South Am. Earth Sci. 86, 176-192. https://doi.org/10.1016/j.jsames.2018.06.013
    Lima, H.M., Pimentel, M.M., Santos, L.C.M.L, Dantas, E.L., 2019. Isotopic and geochemical characterization of the metavolcano-sedimentary rocks of the Jirau do Ponciano Dome:A structural window to a Paleoproterozoic continental arc. root within the Southern Borborema province, Northeast Brazil. J. South Am. Earth Sci. 90, 54-69. https://doi.org/10.1016/j.jsames.2018.12.002
    Ludwig, K. R., 2012. Isoplot 3.75:A geochronological toolkit for Microsoft Excel, Spec. Publ., no. 5. Berkeley Geochronology Center, Berkeley, California, 75p
    Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd:differential evolution ofthe lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349-357. https://doi.org/10.1016/0012-821X(78)90021-3
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M., Bühn, B.M., 2010. In situ zircon U-Pb and Lu-Hf isotope systematic on magmatic rocks:insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília Belt, Central Brazil. Gondwana Res. 16, 200-212. https://10.1016/j.gr.2009.05.008
    McDonough, W.F., Sun, S. s., 1995. The composition of the Earth. Chem. Geol. 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    McMillan, N.J., Harmon, R.S., Moorbath, S., Lopez-Escobar, L., Strong, D.F., 1989. Crustal sources involved in continental arc magmatism:a case study of volcan Mocho-Choshuenco, southern Chile. Geology 17, 1152-1156. https://doi.org/10.1130/0091-7613(1989)017<1152:CSIICA>2.3.CO;2
    Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Res. 50, 67-83. https://doi.org/10.1016/j.gr.2017.04.011
    Miller, B. V., Coleman, D.S., 1988. Neodymium Isotope Geochemistry. Springer-Verlag. https://doi.org/10.1007/978-3-642-48916-7
    Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochi. Cosmochi. Acta 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
    Neves, S.P., 2015. Constraints from zircon geochronology on the tectonic evolution of the Borborema Province (NE Brazil):Widespread intracontinental Neoproterozoic reworking of a Paleoproterozoic accretionary orogen. J. South Am. Earth Sci. 58, 150-164. https://doi.org/10.1016/j.jsames.2014.08.004
    Neves, S.P., Lages, G.A., Brasilino, R.G., Miranda, A.W.A., 2015b. Paleoproterozoic accretionary and collisional processes and the build-up of the Borborema Province (NE Brazil):Geochronological and geochemical evidence from the Central Domain. J. South Am. Earth Sci. 58, 165-187. https://doi.org/10.1016/j.jsames.2014.06.009
    Neves, S.P., da Silva, J.M.R., Bruguier, O., 2017. Geometry, kinematics and geochronology of the Sertânia Complex (central Borborema Province, NE Brazil):Assessing the role of accretionary versus intraplate processes during West Gondwana assembly. Precambrian Res. 298, 552-571. https://doi.org/10.1016/j.precamres.2017.07.006
    Oliveira, R.G., Medeiros, W.E., 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Res. 315, 45-65. https://doi.org/10.1016/j.precamres.2018.07.004
    Padilha, A.L., Vitorello, Í., Pádua, M.B., Fuck, R.A., 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Res. 275, 70-83. https://doi.org/10.1016/j.precamres.2015.12.012
    Pearce, J.A., 2014. Immobile element fingerprinting of ophiolites. Elements 10, 101-108. https://doi.org/10.2113/gselements.10.2.101
    Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
    Pedreira, A.J., De Waele, B., 2008. Contemporaneous evolution of the palaeoproterozoic mesoproterozoic sedimentary basins of the São Francisco-Congo craton. Geol. Soc. Spec. Pub. 294, 33. https://doi.org/10.1144/SP294.3
    Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., Minyem, D., Nsifa, E.N., 2004. The 2.1 Ga West Central African Belt in Cameroon:Extension and evolution. J. Afr. Earth Sci. 39, 159-164. https://doi.org/10.1016/j.jafrearsci.2004.07.053
    Prouteau, G., Scaillet, B., Pichavant, M., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197-200. https://doi.org/10.1038/35065583
    Reddy, S.M., Evans, D.A.D., 2009. Palaeoproterozoic supercontinents and global evolution:Correlations from core to atmosphere. Geol. Soc. Spec. Pub. 323, 1-26. https://doi.org/10.1144/SP323.1
    Sá, J.M., Sousa, L.C., Legrand, J.M., Galindo, A.C., Maia, H.N., Fillipi, R.R., 2014. U-Pb e Sm-Nd em ortognaisses Riacianos e Estaterianos nos Terrenos Rio Piranhas-Serido e Jaguaribeano, Província Borborema, Brasil. Geol. USP-Série Cient. 14, 97-110. https://doi.org/10.5327/Z1519-874X201400030007 (in Portuguese)
    Santos, E.J., 1995. O complexo granítico Lagoa das Pedras:acresção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD thesis, Universidade de São Paulo, 228 pp (in Portuguese)
    Santos, E.J., Medeiros, V.C., 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the transverse zone, Borborema Province, NE Brazil. Rev. Bra. de Geoc 29, 73-84. https://doi.org/10.25249/0375-7536.1999297384
    Santos, E.J., Santos, L.C.M.L., 2019. Reappraisal of the Sumé Complex:geochemistry and geochronology of metaigneous rocks and implications for Paleoproterozoic subduction-accretion events in the Borborema Province, NE Brazil. Braz. J. Geol. 49(1), e20180083. https://doi.org/10.1590/2317-4889201920180083
    Santos, E.J., Nutman, A.P., Brito Neves, B.B., 2004. Idades SHRIMP U-Pb do Complexo Sertânia:implicações sobre a evolução tectônica da Zona Transversal, Província Borborema. Geol. USP. Série Cient. 4, 1-12. https://doi.org/10.5327/s1519-874x2004000100001 (in Portuguese)
    Santos, T.J.S., Fetter, A.H., Neto, J.A.N., 2008. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. Geol. Soc. Spec. Pub. 294, 101-120. https://doi.org/10.1144/SP294.6
    Santos, E.J., Schmus, W.R. Van, Kozuch, M., Neves, B.B. de B., 2010. The Cariris Velhos tectonic event in Northeast Brazil. J. South Am. Earth Sci. 29, 61-76. https://doi.org/10.1016/j.jsames.2009.07.003
    Santos, L.C.M.L., Santos, E.J., Dantas, E.L., Lima, H.M., 2012. Análise estrutural e metamórfica da região de Sucuru (Paraíba):implicações sobre a evolução do Terreno Alto Moxotó, Província Borborema. Geol. USP-Série Cient. 12, 5-20. https://doi.org/10.5327/Z1519-874X2012000300001 (in Portuguese)
    Santos, E.J., Souza Neto, J.A., Carmona, L.C.M., Armstrong, R., Santos, L.C.M.L., Mendes, L.U.D.S., 2013a. The metacarbonate rocks of Itatuba (Paraíba):A record of sedimentary recycling in a Paleoproterozoic collision zone of the Borborema province, NE Brazil. Precambrian Res. 23, 380-389. https://doi.org/10.1016/j.precamres.2012.09.021
    Santos, R.V., Santos, E.J., Neto, J.A.S., Carmona, L.C.M., Sial, A.N., Mancini, L.H., Santos, L.C.M.L., Nascimento, G.H., Mendes, L.U.S., Anastácio, E.M.F., 2013b. Isotope geochemistry of Paleoproterozoic metacarbonates from Itatuba, Borborema Province, Northeastern Brazil:Evidence of marble melting within a collisional suture. Gondwana Res. 23, 380-389. https://doi.org/10.1016/j.gr.2012.04.010
    Santos L.C.M.L., Dantas E.L., Santos E.J., Santos R.V., Lima H.M. 2015. Early to late Paleoproterozoic magmatism in NE Brazil:The Alto Moxotó Terrane and its tectonic implications for the pre-West Gondwana assembly. J. South Am. Earth Sci. 58, 188-209. https://doi.org/10.1016/j.jsames.2014.07.006
    Santos, T.J.S., Amaral, W.S., Ancelmi, M.F., Pitarello, M.Z., Fuck, R.A., Dantas, E.L., 2015a. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil:Implications for West Gondwana assembly. Gondwana Res. 28, 1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
    Santos, L.C.M.L., Dantas, E.L., Cawood, P.A., Santos, E.J., Fuck, R.A., 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil:Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. J. South Am. Earth Sci. 79, 342-363. https://doi.org/10.1016/j.jsames.2017.08.013
    Santos, L.C.M.L., Dantas, E.L., Vidotti, R.M., Cawood, P.A., dos Santos, E.J., Fuck, R.A., Lima, H.M., 2017b. Two-stage terrane assembly in West Gondwana:Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. J. Struc. Geol. 103, 167-184. https://doi.org/10.1016/j.jsg.2017.09.012
    Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J. 2018. Accretion Tectonics in Western Gondwana deduced from Sm-Nd Isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics 37, 2727-2743. https://doi.org/10.1029/2018TC005130
    Santos, L.C.M.L., Dantas, E.L., Cawood, P.A., Lages, G. de A., Lima, H.M., dos Santos, E.J., Caxito, F.A., 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil:Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. J. South Am. Earth Sci. 96, 102384. https://doi.org/10.1016/j.jsames.2019.102384
    Santos, L.C.M.L., Lima, H.M., Lages, G.A., Caxito, F.A., Araújo Neto, J.F., Guimarães, I.P., 2020. Petrogenesis of the Riacho do Icó Stock:evidence for Neoproterozoic slab melting during accretion tectonics in the Borborema Province? Braz. J. Geol. 50(1), e20190127. https://doi.org/10.1590/2317-4889202020190127
    Shaw, S.E., and Flood, R.H., 1981, The New England Batholith, eastern Australia:Geochemical variations in time and space:J. Geophy. Res. 86, 530-10,544. https://10.1029/JB086iB11p10530
    Sial, A.N., Ferreira, V.P., 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil:Forty years of studies. J. South Am. Earth Sci. 68, 113-133. https://doi.org/10.1016/j.jsames.2015.10.005
    Souza, Z.S., Martin, H., Peucat, J.J., Jardim De Sá, E.F., De Freitas Macedo, M.H., 2007. Calc-alkaline magmatism at the Archean-Proterozoic transition:The Caicó Complex Basement (NE Brazil). J. Petrol. 48, 2149-2185. https://doi.org/10.1093/petrology/egm055
    Tatsumi, Y., Stern, R.J., 2006. Manufacturing continental crust in the subduction factory. Oceanography 19, 114-112. https://doi.org/10.5670/oceanog.2006.09
    Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A., 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan African history of Central Africa. Precambrian Res. 1-8, 45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
    Tsoungui, P.N.E., Ganno, S., Njiosseu, E.L.T., Mbongue, J.L.N., Woguia, B.K., Tamehe, L.S., Wambo, J.D.T., Nzenti, J.P., 2020. Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon. Acta Geoch. 39, 404-422. https://doi.org/10.1007/s11631-019-00368-4
    Van Schmus, W.R., Brito Neves, B.B., Hackspacher, P., Babinski, M., 1995. U Pb and Sm Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil:initial conclusions. J. South Am. Earth Sci. 8, 267-288. https://doi.org/10.1016/0895-9811(95)00013-6
    Van Schmus, W.R., Brito Neves, B.B., Williams, I.S., Hackspacher, P.C., Fetter, A.H., Dantas, E.L., Babinski, M., 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana:Insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Res. 127, 287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
    Van Schmus, W.R., Oliveira, E.P., Silva Filho, A.F., Toteu, S.F., Penaye, J., Guimarães, I.P., 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African fold belt. Geol. Soc. Spec. Pub. https://doi.org/10.1144/SP294.5
    Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli., P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.-F., 2004. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9-39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
    Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
    Xia, Y., Xu, X., 2019. A Fragment of Columbia Supercontinent:Insight for Cathaysia Block Basement From Tectono-Magmatic Evolution and Mantle Heterogeneity. Geophys. Res. Lett. 46, 2012-2024. https://doi.org/10.1029/2018GL081882
    Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M. 2002. Review of global 2.1-1.8 Ga orogens:implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59, 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
    Zhao, G., Sun, M., Wilde, S.A., Li, S., 2004. A Paleo-Mesoproterozoic supercontinent:Assembly, growth and breakup. Earth Sci. Rev. 67, 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint