Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Lauro Cézar M. de Lira Santos, Geysson A. Lages, Fabrício A. Caxito, Elton L. Dantas, Peter A. Cawood, Haroldo M. Lima, Felipe J. da Cruz Lima. Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia[J]. Geoscience Frontiers, 2022, 13(5): 101167. doi: 10.1016/j.gsf.2021.101167
Citation: Lauro Cézar M. de Lira Santos, Geysson A. Lages, Fabrício A. Caxito, Elton L. Dantas, Peter A. Cawood, Haroldo M. Lima, Felipe J. da Cruz Lima. Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia[J]. Geoscience Frontiers, 2022, 13(5): 101167. doi: 10.1016/j.gsf.2021.101167

Isotopic and geochemical constraints for a Paleoproterozoic accretionary orogen in the Borborema Province, NE Brazil: Implications for reconstructing Nuna/Columbia

doi: 10.1016/j.gsf.2021.101167
Funds:

This paper represents a later contribution of the first author PhD thesis. PAC acknowledges support from Australian Research Council grant FL160100168. This study was supported by the National Institute of Science and Technology for Tectonic Studies (INCT) of Brazil. Comments and criticism made by Dr. Henrique Bruno and an anonymous reviewer are appreciated as well as those from Kathryn Cutts and M. Santosh.

  • Received Date: 2020-08-26
  • Accepted Date: 2021-01-28
  • Rev Recd Date: 2021-01-25
  • Publish Date: 2021-02-08
  • The Alto Moxotó Terrane of the Borborema Province presents a wide exposure of Paleoproterozoic crust, but unlike other continental blocks of South America, its orogenic history is strongly obliterated by late Neoproterozoic deformation. New isotopic and geochemical studies were conducted in mafic-ultramafic (Fazenda Carmo Suite) and granitic-gneissic rocks (Riacho do Navio Suite) within the terrane. The former present zircon U-Pb crystallization ages at ca. 2.13 Ga, whereas Sm-Nd data suggests a juvenile origin via melting of early Paleoproterozoic to Archean peridotitic sources. Geochemical data for these rocks are compatible with tholeiitic magmas with some degree of crustal contamination and trace element distribution points to a continental-arc related setting interpreted as remnants of the early stages of subduction. In contrast, the Riacho do Navio Suite was emplaced at ca. 2.08 Ga and has highly negative εNd(t) values indicating crustal reworking. The suite displays calc-alkali to alkali-calcic and ferroan geochemical signatures compatible with Cordilleran magmas. In addition, trace-element distribution as well as discriminant diagrams suggest that the precursor magmas were generated during the later stages of a continental arc or in a syn-collisional setting. Based on our results, we suggest that the studied units might represent missing pieces of a Paleoproterozoic accretionary orogen that formed the crustal framework of the Alto Moxotó Terrane, and that this represents a block associated with assembly of the Nuna/Columbia supercontinent, which is now largely hidden within the Neoproterozoic orogenic belts of West Gondwana.
  • loading
  • [1]
    Alkmim, F.F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil:Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 90, 29-58. https://doi.org/10.1016/s0301-9268(98)00032-1
    [2]
    Almeida, F.F.M., Hasui, Y., de Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces:An introduction. Earth-Sci. Rev. 17, 1-29. https://doi.org/10.1016/0012-8252(81)90003-9
    [3]
    Almeida, C.N., Guimarães, I.P., Beurlen, H., Topitsch, W.M., Ferrer, D.M.M., 2009. Evidências de metamorfismo de alta pressão na faixa de dobramentos Pajeú-Paraíba, Província Borborema, nordeste do Brasil:petrografia e química mineral de rochas metamáficas. Rev. Bras. de Geoc. 29, 421-434. https://doi.org/10.25249/0375-7536.2009394421434 (in Portuguese)
    [4]
    Ávila, C.A., Teixeira, W., Cordani, U.G., Moura, C.A.V., Pereira, R.M., 2010. Rhyacian (2.23-2.20 Ga) juvenile accretion in the southern São Francisco craton, Brazil:Geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt. J. South Am. Earth Sci. 29, 464-482. https://doi.org/10.1016/j.jsames.2009.07.009
    [5]
    Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil:Geodynamic features. Precambrian Res. 133, 1-27. https://doi.org/10.1016/j.precamres.2004.03.001
    [6]
    Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
    [7]
    Batumike, J.M., Griffin, W.L., O'Reilly, S.Y., Belousova, E.A., Pawlitschek, M., 2009. Crustal evolution in the central Congo-Kasai Craton, Luebo, D.R. Congo:Insights from zircon U-Pb ages, Hf-isotope and trace-element data. Precambrian Res. 170, 107-115. https://doi.org/10.1016/j.precamres.2008.12.001
    [8]
    Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:implications for high field strength element depletions in island-arc basalts. Earth Planet. Sci. Lett. 128, 327-339. https://doi.org/10.1016/0012-821X(94)90154-6
    [9]
    Brito Neves, B.B., 2011. The Paleoproterozoic in the South-American continent:Diversity in the geologic time. J. South Am. Earth Sci. 32, 270-286. https://doi.org/10.1016/j.jsames.2011.02.004
    [10]
    Brito Neves, B.B., Silva Filho, A.F., 2020. O Superterreno Pernambuco-Alagoas na Província Borborema:ensaio de regionalização tectônica. Geo. USP-Sér. Cient. 18, 3-28, https://doi.org/11606/issn.2316-9095.v19-148257 (in Portuguese)
    [11]
    Brito Neves, B.B., Santos, E.J., Schmus, W.R.Q., 2000. Tectonic history of the Borborema Province. In:Cordani, U., Milani, E.J., Filho, A.T., de Almeida Campos, D. (Eds.), Tectonic Evolution of South America Rio de Janeiro:31st International Geological Congress, Special Publication, pp. 151-182
    [12]
    Brito Neves, B.B., Fuck, R.A., Pimentel, M.M., 2014. The Brasiliano collage in South America:A review. Braz. J. Geol. 44(3), 493-518. https://doi.org/10.5327/Z2317-4889201400030010
    [13]
    Brito Neves, B.B., Santos, E.J., Fuck, R.A., Santos, L.C.M.L., 2016. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America. Braz. J. Geol. 46(4), 491-508. https://doi.org/10.1590/2317-4889201620160004
    [14]
    Bruno, H., Elizeu, V., Heilbron, N., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Dussin, I., Silva, L.G.E., Tupinambá, M., Almeida, J., Neto, C., Storey, C., 2020. Neoarchean and Rhyacian TTG-Sanukidoid suites in the southern São Francisco Paleocontinent, Brazil:Evidence for diachronous change towards modern tectonics. Geosci. Front. 12, 1763-1787. https://doi.org/10.1016/j.gsf.2020.01.015
    [15]
    Bühn, B.M., Pimentel, M.M., Matteini, M., Dantas, E.L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). An. Acad. Bras. Ciênc. 81, 1-16. https://doi.org/10.1590/S0001-37652009000100011
    [16]
    Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. Geol. Soc. Special Publications 318, 1-36. https://doi.org/10.1144/SP318.1
    [17]
    Cawood, P.A., Leitch, E.C., Merle, R.E., Nemchin, A.A. 2011. Orogenesis without collision:Stabilizing the Terra Australis accretionary orogen, eastern Australia. Geol. Soc. of America Bulletin 123, 224-2255. https://doi.org/10.1130/B30415.1
    [18]
    Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., 2018. Geological archive of the onset of plate tectonics. Phil. Trans. of the Royal Society A:Math., Phy. and Eng. Sci. 376, 2132. https://doi.org/10.1098/rsta.2017.0405
    [19]
    Caxito, F.A., Uhlein, A., Stevenson, R., Uhlein, G.J., 2014a. Neoproterozoic oceanic crust remnants in northeast Brazil. Geology 42, 387-390. https://doi.org/10.1130/G35479.1
    [20]
    Caxito, F.A., Dantas, E.L., Stevenson, R., Uhlein, A., 2014b. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins related to collisional orogens:The case of the Rio Preto fold belt on the northwest São Francisco Craton margin, NE Brazil. Gondwana Res. 26, 741-754. https://doi.org/10.1016/j.gr.2013.07.007
    [21]
    Caxito, F.A., Uhlein, A., Dantas, E.L., Stevenson, R., Pedrosa-Soares, A.C., 2015. Orosirian (ca. 1.96 Ga) mafic crust of the northwestern São Francisco Craton margin:Petrography, geochemistry and geochronology of amphibolites from the Rio Preto fold belt basement, NE Brazil. J. South Am. Earth Sci. 59, 95-111. https://doi.org/10.1016/j.jsames.2015.02.003
    [22]
    Caxito, F.A., Uhlein, A., Dantas, E.L., Stevenson, R., Salgado, S.S., Dussin, I.A., Sial, A. da N., 2016. A complete Wilson Cycle recorded within the Riacho do Pontal Orogen, NE Brazil:Implications for the Neoproterozoic evolution of the Borborema Province at the heart of West Gondwana. Precambrian Res. 282, 97-120. https://doi.org/10.1016/j.precamres.2016.07.001
    [23]
    Caxito, F.A., Hagemann, S., Dias, T.G., Barrote, V., Dantas, E.L., Oliveira, A.C., Campello, M.S., Campos, F.C., 2020a. A magmatic barcode for the São Francisco Craton:Contextual in-situ SHRIMP U Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos 374-375, 10578. https://doi.org/10.1016/j.lithos.2020.105708
    [24]
    Caxito, F.A., Basto, C.F., Santos, L.C.M.L., Dantas, E.L., Medeiros, V.C., Gonçalves Dias, T., Barrote, V., Hagemann, S., Almim, A.R., Lana, C., 2021. Neoproterozoic magmatic arc volcanism in the Borborema Province, NE Brazil:possible flare-ups and lulls and implications for western Gondwana assembly. Gondwana Res. 91, 1-25. https://doi.org/10.1016/j.gr.2020.11.015
    [25]
    Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types:25 years later. Australian Journal of Earth Science 48, 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    [26]
    Condie, K.C., 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46, 95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
    [27]
    Condie, K.C., 2007. Accretionary orogens in space and time. Memoir of the Geological Society of America 200, 145-158. https://doi.org/10.1130/2007.1200(09)
    [28]
    Condie, K.C., Pisarevsky, S.A., Korenaga, J., Gardoll, S., 2015. Is the rate of supercontinent assembly changing with time? Precambrian Res. 259, 278-289 https://doi.org/10.1016/j.precamres.2014.07.015
    [29]
    Costa, F.G., Palheta, E.S. de M., Rodrigues, J.B., Gomes, I.P., Vasconcelos, A.M., 2015. Geochemistry and U-Pb zircon ages of plutonic rocks from the Algodões granite-greenstone terrane, Troia Massif, northern Borborema Province, Brazil:Implications for Paleoproterozoic subduction-accretion processes. J. South Am. Earth Sci. 59, 45-68. https://doi.org/10.1016/j.jsames.2015.01.007
    [30]
    Costa, F.G., Klein, E.L., Lafon, J.M., Milhomem Neto, J.M., Galarza, M.A., Rodrigues, J.B., Naleto, J.L.C., Corrêa Lima, R.G., 2018. Geochemistry and U-Pb-Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil:Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Res. 311, 167-194. https://doi.org/10.1016/j.precamres.2018.04.008
    [31]
    D'Agrella-Filho, M.S., Bispo-Santos, F., Trindade, R.I.F., Antonio, P.Y.J., 2016. Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Braz. J. Geol. 46(2), 275-299. https://doi.org/10.1590/2317-4889201620160055
    [32]
    Damian Nance, R., Brendan Murphy, J., 2013. Origins of the supercontinent cycle. Geosci. Front. 4, 439-448. https://doi.org/10.1016/j.gsf.2012.12.007
    [33]
    Caxito, F. de A., Santos, L.C.M.L., Ganade, C.E., Bendaoud, A., Fettous, E.-H., Bouyo, M.H., 2020b. Toward an integrated model of geological evolution for NE Brazil-NW Africa:The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Braz. J. Geol. 502, e20190122. https://doi.org/10.1590/2317-4889202020190122
    [34]
    DePaolo, D.J., 1981. Nd isotopic studies:some new perspectives on Earth structure and evolution. EOS 62, 137-145. https://doi.org/10.1029/EO062i014p00137-01
    [35]
    De Waele, B., Johnson, S.P., Pisarevsky, S.A., 2008. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton:Its role in the Rodinia puzzle. Precambrian Res. 160, 127-141. https://doi.org/10.1016/j.precamres.2007.04.020
    [36]
    DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3(5), 249-252. https://doi.org/10.1029/GL003i005p00249
    [37]
    Ducea, M., 2001. The California arc:Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11, 4-10. https://doi.org/10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2
    [38]
    Ennih, N., Liégeois, J.P., 2008. The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geol. Soc. Spec. Publ. 297, 1-17. https://doi.org/10.1144/SP297.1
    [39]
    Ernst, R.E., Pereira, E., Hamilton, M.A., Pisarevsky, S.A., Rodriques, J., Tassinari, C.C.G., Teixeira, W., Van-Dunem, V., 2013. Mesoproterozoic intraplate magmatic "barcode" record of the Angola portion of the Congo Craton:Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res. 230, 103-118. https://doi.org/10.1016/j.precamres.2013.01.010
    [40]
    Ferreira, A.C.D., Dantas, E.L., Fuck, R.A., Nedel, I.M., 2020. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil. Scie. Rep. 10, 7855. https://doi.org/10.1038/s41598-020-64688-9
    [41]
    Fetter, A.H., Schmus, W.R. VAN, Santos, T.J.S. Nogueira Neto, J.A., Arthaud, M.H., 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil:Implications for the existence of the Paleoproterozoic Supercontinent "Atlantica". Rev. Bras. de Geoc. 3, 102-106. https://doi.org/10.25249/0375-7536.2000301102106
    [42]
    Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta 64, 933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
    [43]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
    [44]
    Gaetani, G.A., Grove, T.L., 1998. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131(4), 323-346. https://doi.org/10.1007/s004100050396
    [45]
    Ganade de Araujo, C.E., Rubatto, D., Hermann, J., Cordani, U.G., Caby, R., Basei, M.A.S., 2014a. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen. Nature Com. 5, 5198. https://doi.org/10.1038/ncomms6198
    [46]
    Ganade de Araujo, C.E., Weinberg, R.F., Cordani, U.G., 2014b. Extruding the Borborema Province (NE-Brazil):A two-stage Neoproterozoic collision process. Terra Nova 26(2), 157-168. https://doi.org/10.1111/ter.12084
    [47]
    Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the geochronologylaboratory of the University of Brasília. An. Acad. Bras. Cienc. 72, 219-245. https://doi.org/10.1590/S0001-37652000000200009
    [48]
    Grove, T.L., Chatterjee, N., Parman, S.W., Médard, E., 2006. The influence of H2O on mantle wedge melting. Earth Planet. Sci. Lett. 249, 74-89. https://doi.org/10.1016/j.epsl.2006.06.043
    [49]
    Hagen-Peter, G., Cottle, J.M., Tulloch, A.J., Cox, S.C., 2015. Mixing between enriched lithospheric mantle and crustal components in a short-lived subduction-related magma system, Dry Valleys area, Antarctica:Insights from U-Pb geochronology, Hf isotopes, and whole-rock geochemistry. Lithosphere 7(2), 174-188. https://doi.org/10.1130/L384.1
    [50]
    Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Spec. Pub. 19, 67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
    [51]
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Kemp, T.I.S., 2017. Earth's Continental Lithosphere Through Time. Annu. Rev. Earth Plannet Sci. 45, 169-198. https://doi.org/10.1146/annurev-earth-063016-020525
    [52]
    Heilbron, M., Cordani, U.G., Alkmim, F.F., 2017. The São Francisco Craton and Its Margins In:Heilbron, M., Cordani, U., Alkmim, F. (Eds), São Francisco Craton, Eastern Brazil, Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews. Springer, Cham, 3-13. https://doi.org/10.1007/978-3-319-01715-0_1
    [53]
    Hollanda, M.H.B.M., Archanjo, C.J., Souza, L.C., Dunyi, L., Armstrong, R., 2011. Long-lived Paleoproterozoic granitic magmatism in the Seridó-Jaguaribe domain, Borborema Province-NE Brazil. J. South Am. Earth Sci. 32(4), 287-300. https://doi.org/10.1016/j.jsames.2011.02.008
    [54]
    Hollocher, K., Robinson, P., Walsh, E., Roberts, D., 2012. Geochemistry of amphibolite-facies volcanics and gabbros of the støren nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway:A key to correlations and paleotectonic settings. Am. J. Sci. 312, 357-416. https://doi.org/10.2475/04.2012.01
    [55]
    Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-548. https://doi.org/10.1139/e71-055
    [56]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laserablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircongeochronology. Chem. Geol. 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [57]
    Klein, E.L., Moura, C.A.V., 2008. São Luís Craton and Gurupi belt (Brazil):Possible links with the West African Craton and surrounding Pan-African belts. Geological Society London Special Publications 294, 137-151. https://doi.org/10.1144/SP294.8
    [58]
    Klein, E.L., Lopes, E.C.S., Rodrigues, J.B., Souza-Gaia, S.M., Cordani, U.G., 2020. Rhyacian and Neoproterozoic magmatic associations of the Gurupi Belt, Brazil:Implications for the tectonic evolution, and regional correlations. Geosci. Front. 11, 2243-2269. https://doi.org/10.1016/j.gsf.2020.02.016
    [59]
    Klemme, S., Prowatke, S., Hametner, K., Günther, D., 2005. Partitioning of trace elements between rutile and silicate melts:implications for subduction zones. Geochi. Cosmochi. Acta 9, 2361-23711. https://doi.org/10.1016/j.gca.2004.11.015
    [60]
    Lages, G.A., Santos, L.C.M.L., Brasilino, R.G., Rodrigues, J.B., Dantas, E.L., 2019. Statherian-Calymmian (ca. 1.6 Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil:Implications for within-plate and coeval collisional tectonics in West Gondwana. J. South Am. Earth Sci. 91, 116-130. https://doi.org/10.1016/j.jsames.2019.02.003
    [61]
    Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids:evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 28-235. https://doi.org/10.1016/j.lithos.2014.06.012
    [62]
    Lima, H.M., Pimentel, M.M., Fuck, R.A., Santos, L.C.M.L., Dantas, E.L., 2018. Geochemical and detrital zircon geochronological investigation of the metavolcanosedimentary Araticum complex, sergipano fold belt:Implications for the evolution of the Borborema Province, NE Brazil. J. South Am. Earth Sci. 86, 176-192. https://doi.org/10.1016/j.jsames.2018.06.013
    [63]
    Lima, H.M., Pimentel, M.M., Santos, L.C.M.L, Dantas, E.L., 2019. Isotopic and geochemical characterization of the metavolcano-sedimentary rocks of the Jirau do Ponciano Dome:A structural window to a Paleoproterozoic continental arc. root within the Southern Borborema province, Northeast Brazil. J. South Am. Earth Sci. 90, 54-69. https://doi.org/10.1016/j.jsames.2018.12.002
    [64]
    Ludwig, K. R., 2012. Isoplot 3.75:A geochronological toolkit for Microsoft Excel, Spec. Publ., no. 5. Berkeley Geochronology Center, Berkeley, California, 75p
    [65]
    Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd:differential evolution ofthe lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349-357. https://doi.org/10.1016/0012-821X(78)90021-3
    [66]
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [67]
    Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M., Bühn, B.M., 2010. In situ zircon U-Pb and Lu-Hf isotope systematic on magmatic rocks:insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília Belt, Central Brazil. Gondwana Res. 16, 200-212. https://10.1016/j.gr.2009.05.008
    [68]
    McDonough, W.F., Sun, S. s., 1995. The composition of the Earth. Chem. Geol. 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    [69]
    McMillan, N.J., Harmon, R.S., Moorbath, S., Lopez-Escobar, L., Strong, D.F., 1989. Crustal sources involved in continental arc magmatism:a case study of volcan Mocho-Choshuenco, southern Chile. Geology 17, 1152-1156. https://doi.org/10.1130/0091-7613(1989)017<1152:CSIICA>2.3.CO;2
    [70]
    Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Res. 50, 67-83. https://doi.org/10.1016/j.gr.2017.04.011
    [71]
    Miller, B. V., Coleman, D.S., 1988. Neodymium Isotope Geochemistry. Springer-Verlag. https://doi.org/10.1007/978-3-642-48916-7
    [72]
    Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochi. Cosmochi. Acta 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
    [73]
    Neves, S.P., 2015. Constraints from zircon geochronology on the tectonic evolution of the Borborema Province (NE Brazil):Widespread intracontinental Neoproterozoic reworking of a Paleoproterozoic accretionary orogen. J. South Am. Earth Sci. 58, 150-164. https://doi.org/10.1016/j.jsames.2014.08.004
    [74]
    Neves, S.P., Lages, G.A., Brasilino, R.G., Miranda, A.W.A., 2015b. Paleoproterozoic accretionary and collisional processes and the build-up of the Borborema Province (NE Brazil):Geochronological and geochemical evidence from the Central Domain. J. South Am. Earth Sci. 58, 165-187. https://doi.org/10.1016/j.jsames.2014.06.009
    [75]
    Neves, S.P., da Silva, J.M.R., Bruguier, O., 2017. Geometry, kinematics and geochronology of the Sertânia Complex (central Borborema Province, NE Brazil):Assessing the role of accretionary versus intraplate processes during West Gondwana assembly. Precambrian Res. 298, 552-571. https://doi.org/10.1016/j.precamres.2017.07.006
    [76]
    Oliveira, R.G., Medeiros, W.E., 2018. Deep crustal framework of the Borborema Province, NE Brazil, derived from gravity and magnetic data. Precambrian Res. 315, 45-65. https://doi.org/10.1016/j.precamres.2018.07.004
    [77]
    Padilha, A.L., Vitorello, Í., Pádua, M.B., Fuck, R.A., 2016. Deep magnetotelluric signatures of the early Neoproterozoic Cariris Velhos tectonic event within the Transversal sub-province of the Borborema Province, NE Brazil. Precambrian Res. 275, 70-83. https://doi.org/10.1016/j.precamres.2015.12.012
    [78]
    Pearce, J.A., 2014. Immobile element fingerprinting of ophiolites. Elements 10, 101-108. https://doi.org/10.2113/gselements.10.2.101
    [79]
    Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
    [80]
    Pedreira, A.J., De Waele, B., 2008. Contemporaneous evolution of the palaeoproterozoic mesoproterozoic sedimentary basins of the São Francisco-Congo craton. Geol. Soc. Spec. Pub. 294, 33. https://doi.org/10.1144/SP294.3
    [81]
    Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., Minyem, D., Nsifa, E.N., 2004. The 2.1 Ga West Central African Belt in Cameroon:Extension and evolution. J. Afr. Earth Sci. 39, 159-164. https://doi.org/10.1016/j.jafrearsci.2004.07.053
    [82]
    Prouteau, G., Scaillet, B., Pichavant, M., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197-200. https://doi.org/10.1038/35065583
    [83]
    Reddy, S.M., Evans, D.A.D., 2009. Palaeoproterozoic supercontinents and global evolution:Correlations from core to atmosphere. Geol. Soc. Spec. Pub. 323, 1-26. https://doi.org/10.1144/SP323.1
    [84]
    Sá, J.M., Sousa, L.C., Legrand, J.M., Galindo, A.C., Maia, H.N., Fillipi, R.R., 2014. U-Pb e Sm-Nd em ortognaisses Riacianos e Estaterianos nos Terrenos Rio Piranhas-Serido e Jaguaribeano, Província Borborema, Brasil. Geol. USP-Série Cient. 14, 97-110. https://doi.org/10.5327/Z1519-874X201400030007 (in Portuguese)
    [85]
    Santos, E.J., 1995. O complexo granítico Lagoa das Pedras:acresção e colisão na região de Floresta (Pernambuco), Província Borborema. PhD thesis, Universidade de São Paulo, 228 pp (in Portuguese)
    [86]
    Santos, E.J., Medeiros, V.C., 1999. Constraints from granitic plutonism on Proterozoic crustal growth of the transverse zone, Borborema Province, NE Brazil. Rev. Bra. de Geoc 29, 73-84. https://doi.org/10.25249/0375-7536.1999297384
    [87]
    Santos, E.J., Santos, L.C.M.L., 2019. Reappraisal of the Sumé Complex:geochemistry and geochronology of metaigneous rocks and implications for Paleoproterozoic subduction-accretion events in the Borborema Province, NE Brazil. Braz. J. Geol. 49(1), e20180083. https://doi.org/10.1590/2317-4889201920180083
    [88]
    Santos, E.J., Nutman, A.P., Brito Neves, B.B., 2004. Idades SHRIMP U-Pb do Complexo Sertânia:implicações sobre a evolução tectônica da Zona Transversal, Província Borborema. Geol. USP. Série Cient. 4, 1-12. https://doi.org/10.5327/s1519-874x2004000100001 (in Portuguese)
    [89]
    Santos, T.J.S., Fetter, A.H., Neto, J.A.N., 2008. Comparisons between the northwestern Borborema Province, NE Brazil, and the southwestern Pharusian Dahomey Belt, SW Central Africa. Geol. Soc. Spec. Pub. 294, 101-120. https://doi.org/10.1144/SP294.6
    [90]
    Santos, E.J., Schmus, W.R. Van, Kozuch, M., Neves, B.B. de B., 2010. The Cariris Velhos tectonic event in Northeast Brazil. J. South Am. Earth Sci. 29, 61-76. https://doi.org/10.1016/j.jsames.2009.07.003
    [91]
    Santos, L.C.M.L., Santos, E.J., Dantas, E.L., Lima, H.M., 2012. Análise estrutural e metamórfica da região de Sucuru (Paraíba):implicações sobre a evolução do Terreno Alto Moxotó, Província Borborema. Geol. USP-Série Cient. 12, 5-20. https://doi.org/10.5327/Z1519-874X2012000300001 (in Portuguese)
    [92]
    Santos, E.J., Souza Neto, J.A., Carmona, L.C.M., Armstrong, R., Santos, L.C.M.L., Mendes, L.U.D.S., 2013a. The metacarbonate rocks of Itatuba (Paraíba):A record of sedimentary recycling in a Paleoproterozoic collision zone of the Borborema province, NE Brazil. Precambrian Res. 23, 380-389. https://doi.org/10.1016/j.precamres.2012.09.021
    [93]
    Santos, R.V., Santos, E.J., Neto, J.A.S., Carmona, L.C.M., Sial, A.N., Mancini, L.H., Santos, L.C.M.L., Nascimento, G.H., Mendes, L.U.S., Anastácio, E.M.F., 2013b. Isotope geochemistry of Paleoproterozoic metacarbonates from Itatuba, Borborema Province, Northeastern Brazil:Evidence of marble melting within a collisional suture. Gondwana Res. 23, 380-389. https://doi.org/10.1016/j.gr.2012.04.010
    [94]
    Santos L.C.M.L., Dantas E.L., Santos E.J., Santos R.V., Lima H.M. 2015. Early to late Paleoproterozoic magmatism in NE Brazil:The Alto Moxotó Terrane and its tectonic implications for the pre-West Gondwana assembly. J. South Am. Earth Sci. 58, 188-209. https://doi.org/10.1016/j.jsames.2014.07.006
    [95]
    Santos, T.J.S., Amaral, W.S., Ancelmi, M.F., Pitarello, M.Z., Fuck, R.A., Dantas, E.L., 2015a. U-Pb age of the coesite-bearing eclogite from NW Borborema Province, NE Brazil:Implications for West Gondwana assembly. Gondwana Res. 28, 1183-1196. https://doi.org/10.1016/j.gr.2014.09.013
    [96]
    Santos, L.C.M.L., Dantas, E.L., Cawood, P.A., Santos, E.J., Fuck, R.A., 2017a. Neoarchean crustal growth and Paleoproterozoic reworking in the Borborema Province, NE Brazil:Insights from geochemical and isotopic data of TTG and metagranitic rocks of the Alto Moxotó Terrane. J. South Am. Earth Sci. 79, 342-363. https://doi.org/10.1016/j.jsames.2017.08.013
    [97]
    Santos, L.C.M.L., Dantas, E.L., Vidotti, R.M., Cawood, P.A., dos Santos, E.J., Fuck, R.A., Lima, H.M., 2017b. Two-stage terrane assembly in West Gondwana:Insights from structural geology and geophysical data of central Borborema Province, NE Brazil. J. Struc. Geol. 103, 167-184. https://doi.org/10.1016/j.jsg.2017.09.012
    [98]
    Santos L.C.M.L., Dantas E.L., Cawood P.A., Lages G.A., Lima H.M., Santos E.J. 2018. Accretion Tectonics in Western Gondwana deduced from Sm-Nd Isotope mapping of terranes in the Borborema Province, NE Brazil. Tectonics 37, 2727-2743. https://doi.org/10.1029/2018TC005130
    [99]
    Santos, L.C.M.L., Dantas, E.L., Cawood, P.A., Lages, G. de A., Lima, H.M., dos Santos, E.J., Caxito, F.A., 2019. Early to late Neoproterozoic subduction-accretion episodes in the Cariris Velhos Belt of the Borborema Province, Brazil:Insights from isotope and whole-rock geochemical data of supracrustal and granitic rocks. J. South Am. Earth Sci. 96, 102384. https://doi.org/10.1016/j.jsames.2019.102384
    [100]
    Santos, L.C.M.L., Lima, H.M., Lages, G.A., Caxito, F.A., Araújo Neto, J.F., Guimarães, I.P., 2020. Petrogenesis of the Riacho do Icó Stock:evidence for Neoproterozoic slab melting during accretion tectonics in the Borborema Province? Braz. J. Geol. 50(1), e20190127. https://doi.org/10.1590/2317-4889202020190127
    [101]
    Shaw, S.E., and Flood, R.H., 1981, The New England Batholith, eastern Australia:Geochemical variations in time and space:J. Geophy. Res. 86, 530-10,544. https://10.1029/JB086iB11p10530
    [102]
    Sial, A.N., Ferreira, V.P., 2016. Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajeú terranes, northeastern Brazil:Forty years of studies. J. South Am. Earth Sci. 68, 113-133. https://doi.org/10.1016/j.jsames.2015.10.005
    [103]
    Souza, Z.S., Martin, H., Peucat, J.J., Jardim De Sá, E.F., De Freitas Macedo, M.H., 2007. Calc-alkaline magmatism at the Archean-Proterozoic transition:The Caicó Complex Basement (NE Brazil). J. Petrol. 48, 2149-2185. https://doi.org/10.1093/petrology/egm055
    [104]
    Tatsumi, Y., Stern, R.J., 2006. Manufacturing continental crust in the subduction factory. Oceanography 19, 114-112. https://doi.org/10.5670/oceanog.2006.09
    [105]
    Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A., 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan African history of Central Africa. Precambrian Res. 1-8, 45-73. https://doi.org/10.1016/S0301-9268(00)00149-2
    [106]
    Tsoungui, P.N.E., Ganno, S., Njiosseu, E.L.T., Mbongue, J.L.N., Woguia, B.K., Tamehe, L.S., Wambo, J.D.T., Nzenti, J.P., 2020. Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon. Acta Geoch. 39, 404-422. https://doi.org/10.1007/s11631-019-00368-4
    [107]
    Van Schmus, W.R., Brito Neves, B.B., Hackspacher, P., Babinski, M., 1995. U Pb and Sm Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil:initial conclusions. J. South Am. Earth Sci. 8, 267-288. https://doi.org/10.1016/0895-9811(95)00013-6
    [108]
    Van Schmus, W.R., Brito Neves, B.B., Williams, I.S., Hackspacher, P.C., Fetter, A.H., Dantas, E.L., Babinski, M., 2003. The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana:Insights from SHRIMP U-Pb detrital zircon ages and Sm-Nd crustal residence (TDM) ages. Precambrian Res. 127, 287-327. https://doi.org/10.1016/S0301-9268(03)00197-9
    [109]
    Van Schmus, W.R., Oliveira, E.P., Silva Filho, A.F., Toteu, S.F., Penaye, J., Guimarães, I.P., 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African fold belt. Geol. Soc. Spec. Pub. https://doi.org/10.1144/SP294.5
    [110]
    Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli., P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.-F., 2004. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9-39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
    [111]
    Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 50, 11-30. https://doi.org/10.1016/0012-821X(80)90116-8
    [112]
    Xia, Y., Xu, X., 2019. A Fragment of Columbia Supercontinent:Insight for Cathaysia Block Basement From Tectono-Magmatic Evolution and Mantle Heterogeneity. Geophys. Res. Lett. 46, 2012-2024. https://doi.org/10.1029/2018GL081882
    [113]
    Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M. 2002. Review of global 2.1-1.8 Ga orogens:implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59, 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
    [114]
    Zhao, G., Sun, M., Wilde, S.A., Li, S., 2004. A Paleo-Mesoproterozoic supercontinent:Assembly, growth and breakup. Earth Sci. Rev. 67, 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return