Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Samuel Moreira Bersan, André Danderfer, Craig Storey, Henrique Bruno, Hugo Moreira, Francisco Abreu, Cristiano Lana, Leonardo Gonçalves, Isabela Nahas. A perspective on potassic and ultrapotassic rocks: Constraints on the Paleoproterozoic late to post-collisional event in the São Francisco paleocontinent[J]. Geoscience Frontiers, 2022, 13(5): 101179. doi: 10.1016/j.gsf.2021.101179
Citation: Samuel Moreira Bersan, André Danderfer, Craig Storey, Henrique Bruno, Hugo Moreira, Francisco Abreu, Cristiano Lana, Leonardo Gonçalves, Isabela Nahas. A perspective on potassic and ultrapotassic rocks: Constraints on the Paleoproterozoic late to post-collisional event in the São Francisco paleocontinent[J]. Geoscience Frontiers, 2022, 13(5): 101179. doi: 10.1016/j.gsf.2021.101179

A perspective on potassic and ultrapotassic rocks: Constraints on the Paleoproterozoic late to post-collisional event in the São Francisco paleocontinent

doi: 10.1016/j.gsf.2021.101179
Funds:

ã

vel Superior (CAPES), by granting a PhD scholarship to S.M. Bersan (process n°

88881.188438/2018-01 of PDSE program n°

47/2017)

This article is part of the Ph.D thesis by S.M. Bersan. We would like to thank the financial support provided by FAPEMIG (CRA-APQ-00125-12) and the Coordenaç

oamento de Pessoal de Ní

I. Nahas was granted a Fapemig scientific initiation scholarship (process PIBIC/Fapemig/UFOP N10/2017). Our gratitude goes to Ana Alkmim for the support in the isotopic analyses, to Bernard Bonin and Bruna Carvalho for their helpful corrections and suggestions on the former version of this manuscript, and to Mathias Schannor for the editorial handling.

o de Aperfeiç

  • Received Date: 2020-07-15
  • Accepted Date: 2021-02-14
  • Rev Recd Date: 2021-02-02
  • Publish Date: 2021-02-25
  • The late- to post-collisional stage in orogenic systems is characterized by the coeval existence of bimodal potassic to ultrapotassic magmatic activity related to partial melting of an enriched lithospheric mantle together with crustal derived melts. In this paper, we present new whole rock geochemical analyses combined with zircon and titanite U-Pb and zircon Hf isotopic data from potassic to ultrapotassic rocks from six plutons that occur within the Archean Itacambira-Monte Azul block (BIMA), to discuss their petrogenesis and the tectonic implications for the São Francisco paleocontinent. The new U-Pb ages range from ca. 2.06 Ga to 1.98 Ga and reveal long-lasting potassic magmatism within the BIMA, which is within the late- to- post-collisional stage of the São Francisco paleocontinent evolution. The ultrapotassic rocks are compatible with a fluid-related metasomatized mantle source enriched by previous subduction events, whereas the potassic rocks are bimodal and have a transitional shoshonitic to A-type affinity. These rocks have a hybrid nature, possible related to the mixing between the mafic potassic/ultrapotassic rocks and high temperature crustal melts of the Archean continental crust. Our results also show an increase of within-plate signature towards the younger potassic magmas. The participation of an important Archean crustal component in the genesis of these rocks is highlighted by the common and occasionally abundant occurrence of Archean inherited zircons. The Hf isotopic record shows that most of the zircon inheritance has dominantly subchondritic εHf(t) values, which fits a crustal reworking derivation from a similar Eo- to Paleoarchean precursor crust. However, the presence of juvenile 2.36 Ga zircon inheritance in an ultrapotassic sample reveal the existence of a hidden reservoir that is somewhat similar to the described for the Mineiro Belt in southern São Francisco paleocontinent.
  • loading
  • [1]
    Aguilar, C., Alkmim, F.F., Lana, C., Farina, F., 2017. Palaeoproterozoic assembly of the São Francisco craton, SE Brazil:New insights from U-Pb titanite and monazite dating. Precambr. Res. 289, 95-115
    [2]
    Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., Dopico, C.M., 2016. Archean crustal evolution in the Southern São Francisco craton, Brazil:Constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos 266-267, 64-86
    [3]
    Alkmim, F.F., Marshak, S., Pedrosa-Soares, A.C., Peres, G.G., Cruz, S.C.P., Whittington, A., 2006. Kinematic Evolution of the Araçuaí-West Congo orogen in Brazil and Africa:Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambr. Res. 149, 43-64
    [4]
    Ávila, C.A., Teixeira, W., Cordani, U.G., Moura, C.A.V., Pereira, R.M., 2010. Rhyacian (2.23-2.20) juvenile accretion in the southern São Francisco craton, Brazil:Geochemical and isotopic evidence from the Serrinha magmatic suíte, Mineiro belt. J. South. Am. Earth. Sci. 29, 464-482
    [5]
    Ávila, C.A., Teixeira, W., Bongiolo, E.M., Dussin, I.A., Vieira, T.A.T., 2014. Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segmentof the Mineiro belt, São Francisco craton, Brazil. Precambr. Res. 243, 221-251
    [6]
    Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605-626
    [7]
    Barbosa, J.S.F., Barbosa, R.G., 2017. The Paleoproterozoic Eastern Bahia Orogenic Domain. In:Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.), São Francisco Craton, Eastern Brazil:Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 57-69
    [8]
    Barbosa, J.S.F., Sabate, P., 2002. Geological feature and the paleoproterozoic of four archean crustal segments of the São Francisco Craton, Bahia, Brazil. A syntesis. An. Acad. Bras. Ciênc. 2, 343-359
    [9]
    Barbosa, J.S., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco cráton, Bahia, Brazil:geodynamic feactures. Precambr. Res. 133(3), 1-27
    [10]
    Barbosa, N.S., Teixeira, W., Leal, L.R.B., Leal, A.B.M., 2013. Evolução crustal do setor ocidental do Bloco Arqueano Gavião, Cráton do São Francisco, com base em evidências U-Pb, Sm-Nd e Rb-Sr. Geol. USP 13(4), 63-88
    [11]
    Barbosa, N.S., Teixeira, W., Avila, C.A., Montecinos, P.M., Bongiolo, E.M., 2015. 2.17-2.10 plutonic episodes in the Mineiro belt, São Francisco craton, Brazil:U-Pb ages, geochemical constraints and tectonics. Precambr. Res. 270, 204-225
    [12]
    Barbosa, N., Menezes Leal, A.B., Debruyne, D., Bastos Leal, L.R., Marinho, M., Mercês, L., Barbosa, J.S., Koproski, L.M., 2020. Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi-Correntina block (GCB), north São Francisco Craton, Brazil, unraveled by U-Pb Geochronology, Nd-Sr isotopes and geochemical constraints. Precambr. Res. 340, 105614
    [13]
    Bastos Leal, L.R., Teixeira, W., Cunha, J.C., Menezes Leal, A.B., Macambira, M.J.B., Rosa, M.L.S., 2000. Isotopic signatures of Paleoproterozoic granitoids of the Gavião Block and implications for the evolution of the São Francisco Craton, Bahia, Brazil. Rev. Bras. Geocienc. 30(1), 66-69
    [14]
    Bersan, S.M., Danderfer, A., Lagoeiro, L., Costa, A.F.O., 2017. The kinematic evolution of the Serra Central Salient, Eastern Brazil:a Neoproterozoic progressive arc in northern Espinhaço fold-thrust belt. J. South. Am. Earth. Sci. 80, 131-148
    [15]
    Bersan, S.M., Danderfer, F.A., Abreu, F.R., Lana, C., 2018a. Petrography, geochemistry and geochronology of the potassic granitoids of the Rio Itacambiruçu Supersuite:implications for the Meso- to Neoarchean evolution of the Itacambira-Monte Azul block. Braz. J. Geol. 48, 1-24
    [16]
    Bersan, S.M., Danderfer, F.A., Abreu, F.R., Lana, C., 2018b. Geoquímica e geocronologia da Suíte Paciência:implicações para o fim da evolução riaciana do Bloco Itacambira-Monte Azul. Geol. USP.18, 185-206 (in Portuguese)
    [17]
    Bersan, S.M., Costa, A.F.O., Danderfer, A., Abreu, F.R., Lana, C., Queiroga, G., Storey, C., Moreira, H., 2020. Paleoproterozoic juvenile magmatism within the northeastern sector of the São Francisco paleocontinent:Insights from the shoshonitic high Ba-Sr Montezuma granitoids. Geosci. Front. 11(5), 1821-1840
    [18]
    Bitencourt, M.F., Nardi, L.V.S., 2004. The role of xenoliths and flow segregation in the genesis and evolution of the Paleoproterozoic Itapema Granite, a crustally derived magma of shoshonitic affinity from southern Brazil. Lithos 73, 1-19
    [19]
    Bonin, B., 1990. From orogenic to anorogenic settings:evolution of granitoid suites after a major orogenesis. Geol. Jou. 25, 261-270
    [20]
    Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78(1), 1-24
    [21]
    Bonin, B., 2007. A-type granites and related rocks:Evolution of a concept, problems and prospects. Lithos 97(1-2), 1-29
    [22]
    Boynton, W.V., 1984. Cosmochemistry of the rare earth elements:Meteorite studies. In:Henderson, P. (Ed.), Rare Earth Element Geochemistry. Developments in Geochemistry, pp. 63-114
    [23]
    Bruno, H., Elizeu, V., Heilbron, M., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Dussin, I., Silva, L.G.E.S., Tupinambá, M., Almeida, J., Dunlop, J., Neto, C., Carvalho, M., Almeida, R., Storey, C., 2020. Neoarchean and Rhyacian TTG and Sanukitoid suites in the southern São Francisco Paleocontinent, SE Brazil:Evidence for diachronous onset of modern-style plate tectonics. Geosci. Front. 11(5), 1763-1787
    [24]
    Bruno, H., Heilbron, M., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Motta, R., Almeida, J., Almeida, R., Carvalho, M., Storey, C. 2021. Evidence for a complex accretionary history preceding the amalgamation of Columbia:The Rhyacian Minas-Bahia Orogen, southern São Francisco Paleocontinent, Brazil. Gondwana Res. 92, 149-171
    [25]
    Campbell, I.H., Stepanov, A.S., Liang, H-Y., Allen, C.M., Norman, M.D., Zhang, Y-H., Xie, Y-W., 2014. The origin of shoshonites:new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib. Mineral. Petrol. 167, 983
    [26]
    Cardoso, C.D., Ávila, C.A., Neumann, R., Oliveira, E.P., Valeriano, C.M., Dussin, I., 2019. A Rhyacian continental arc during the evolution of the Mineiro belt, Brazil:Constraints from the Rio Grande and Brumado metadiorites. Lithos 326-327, 246-264
    [27]
    Carvalho, B.B., Janasi, V.A., Henrique-Pinto, R., 2014. Geochemical and Sr-Nd-Pb isotope constraints on the petrogenesis of the K-rich Pedra Branca Syenite:Implications for the Neoproterozoic post-collisional magmatism in SE Brazil. Lithos 205, 39-59
    [28]
    Carvalho, B.B., Janasi, V.A., Sawyer, E.W., 2017. Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil:A dating and isotopic study of the Kinawa migmatite. Precambr. Res. 291, 98-118
    [29]
    Castillo, P.R., Newhall, C.G., 2004. Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, southern Luzon, Philippines. J. Petrol. 45, 1089-1108
    [30]
    Clemens, J.D., Buick, I.S., Frey, D., Lana, C., Villaros, A., 2017. Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa:the 'smoking gun' of mantle melting and crustal growth during Cape granite genesis?. Contrib. Mineral. Petrol. 172, 72
    [31]
    Conceição, R.V., Green, D.H. 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite. Lithos 72, 209-229
    [32]
    Conceição, H., Rosa, M.L.S., Macambira, M.J.B., Scheller, T., Marinho, M.M., Rios, D.C., 2003. 2.09 Ga idade mímina da cristalização do Batólito Sienítico Itiúba:um problema para o posicionamento do clímax do metamorfismo granulítico (2.05-2.08 Ga) no Cinturão Móvel Salvador-Curaçá, Bahia. Rev. Bras. Geocienc. 33, 395-398 (in Portuguese)
    [33]
    Cruz, S.C., Peucat, J., Teixeira, L., Carneiro, M.A., Martins, A.A.M., Santana, J.S., Souza, J.S., Barbosa, J.S.F., Menezes-Leal, A.B., Dantas, E., Pimentel, M., 2012. The Caraguataí syenitic suite, a ca. 2.7 Ga-old alkaline magmatism (petrology, geochemistry and UePb zircon ages). Southern Gavião block (São Francisco Craton), Brazil. J. South. Am. Earth. Sci. 37, 95-112
    [34]
    Cruz, S.C.P., Barbosa, J.S.F., Pinto, M.S., Peucat, J.J., Paquette, J.L., Santos de Souza, J., de Souza Martins, V., Chemale Júnior, F., Carneiro, M.A., 2016. The Siderian-Orosirian magmatism in the Archean Gavião Paleoplate, Brazil:U-Pb geochronology, geochemistry and tectonic implications. J. South. Am. Earth. Sci. 69, 43-79
    [35]
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10(5), 1765-1787
    [36]
    Silva, L.C. da, Armstrong, R., Noce, C.M., Carneiro, M.A., Pimentel, M.M., Pedrosa-Soares, A.C., Leite, C.A., Vieira, V.S., Silva, M.A., Castro, V.J., Cardoso Filho, J.M. 2002. Reavaliação da evolução geológica em terrenos pre-cambrianos brasileiros, com base em novos dados U-Pb SHRIMP, Parte II:orógeno Araçuaí, Cinturão mineiro e Cráton São Francisco Meridional. Rev. Bras. Geocienc. 32(4), 513-528 (in Portuguese)
    [37]
    Silva, L.C. da, Pedrosa-Soares, A.C., Armstrong, R., Pinto, C.P., Magalhães, J.T.R., Pinheiro, M.A.P., Santos, G.G., 2016. Disclosing the Paleoarchean to Ediacaran history of the São Francisco Craton basement:The Porteirinha domain (northern Araçuaí orogen, Brazil). J. South. Am. Earth. Sci. 68, 50-67
    [38]
    De Campos, C.P., Medeiros, S.R., Mendes, J.C., Pedrosa-Soares, A.C., Dussin, I., Ludka, I.P., Dantas, E.L., 2016. Cambro-Ordovician magmatism in the Araçuaí Belt (SE Brazil):Snapshots from a post-collisional event. J. South. Am. Earth. Sci. 68, 248-268
    [39]
    Degler, R., Pedrosa-Soares, A., Novo, T., Tedeschi, M., Silva, L.C., Dussin, I., Lana, C., 2018. Rhyacian-Orosirian isotopic records from the basement of the Aracuai-Ribeira orogenic system (SE Brazil):Links in the Congo-Sao Francisco palaeocontinent. Precambr. Res. 317, 179-195
    [40]
    Dopico, C.M., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambr. Res. 291, 143-161
    [41]
    Drumond, J.B.V., von Sperling, E., Raposo, F.O., 1980. Projeto Porteirinha-Monte Azul. Belo Horizonte, DNPM-CPRM, 559 pp
    [42]
    Eby, G.N., 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology 20(7), 641-644
    [43]
    Farina, F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium-and high-K granitoids:Clues from the Southern São Francisco Craton (Brazil). Precambr. Res. 266, 375-394
    [44]
    Florisbal, L.M., Bitencourt, M.F., Nardi, L.V.S., Conceicão, R.V., 2009. Early post-collisional granitic and coeval mafic magmatism of medium- to high-K tholeiitic affinity within the Neoproterozoic Southern Brazilian Shear Belt. Precambr. Res. 175, 135-148
    [45]
    Foley, S., 1992a. Petrological characterization of the source componentes of potassic magmas:Geochemical and experimental constraints. Lithos 28, 187-204
    [46]
    Foley, S.F., 1992b. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435-453
    [47]
    Foley, S., Venturelli, G., Green, D.H., Toscani, L., 1987. The ultrapotassic rocks:characteristics, classification, and constraints for petrogenetic models. Earth-Sci. Rev. 24, 81-134
    [48]
    Fonseca, E., 1993. Depósito aurífero de Riacho dos Machados, norte de MG:Hidrotermalismo, deformação e mineralizações associadas. M.S thesis, Universidade Federal de Minas Gerais, 179 pp (in Portuguese)
    [49]
    Fonseca, E., Lobato, L.M., Baares, F.J., 1996. Evolução geoquímica do Grupo Riacho dos Machados, portador de mineralização aurífera. Geochim. Bras. 10(2), 417-442 (in Portuguese)
    [50]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048
    [51]
    Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Lithos 48, 237-262
    [52]
    Gibson, S.A., Thompson, R.N., Leat, P.T., Morrison, M.A., Hendry, G.L., Dickin, A.P., Mitchell, J.G., 1993. Ultrapotassic Magmas along the Flanks of the Oligo-Miocene Rio Grande Rift, USA:Monitors of the Zone of Lithospheric Mantle Extension and Thinning Beneath a Continental Rift. J. Petrol. 34, 187-228
    [53]
    Goswami, B., Bhattacharyya, C., 2014. Petrogenesis of shoshonitic granitoids, eastern India:Implications for the late Grenvillian post-collisional magmatism. Geosci. Front. 5, 821-843
    [54]
    Grossi-Sad, J.H., Lobato, L.M., Pedrosa-Soares, A.C., Soares Filho, B.S., 1997. Projeto Espinhaço em CD-ROM (textos, mapas e anexos). COMIG, Belo Horizonte, 2693 pp (in Portuguese)
    [55]
    Guedes, I.N.R., Bersan, S.M., Gonçalves, L., Gonçalves, C.C., Danderfer, A., 2019. Registro da deformação neoproterozoica no embasamento do orógeno Araçuaí em granitoides pós-colisionais do Bloco Itacambira-Monte Azul. In:XVII Simpósio Nacional de Estudos Tectônicos, Bento Gonçalves. Anais.. Bento Gonçalves, Sociedade Brasileira de Geologia, pp. 38 (in Portuguese)
    [56]
    Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S.J., Albarède, F., 2012. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet. Sci. Lett. 337-338, 211-223
    [57]
    Heilbron, M., Duarte, B.P., Valeriano, C.M., Simonetti, A., Machado, N., Nogueira, J.R., 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U/Pb geochronology:Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambr. Res. 178, 136-148
    [58]
    Heilbron, M., Cordani, U.G., Alkmim, F.F., Cordani, U.G., 2017. The São Francisco Craton and its margins. In:Heilbron, M., Alkmim, F. (Eds.), The São Francisco Craton and Its Margins, Eastern Brazil. Springer International Publishing, Switzerland, pp. 3-14
    [59]
    Ionov, D.A., O'Reilly, S.Y., Griffin, W.L., 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 141, 153-184
    [60]
    Janoušek, V., Bowes, D., Rogers, G., Farrow, C.M., Jelínek, E., 2000. Modelling diverse processes in the petrogenesis of a composite batholith:the Central Bohemian Pluton, Central European Hercynides. J. Petrol. 41(4), 511
    [61]
    Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J., Yang, W.Z., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, northwestern Xinjiang, China:implications for granitoid geneses. Lithos 63, 165-187
    [62]
    Knauer, L.G., Silva, L.L, Souza, F.B.B., Silva, L.R., Carmo, R.C., 2007. Folha Monte Azul, SD.23-Z-D-II, 1:100.000. Belo Horizonte, UFMG/CPRM, 72 pp.
    [63]
    Knauer, L.G., Romano, A.W., Pereira, D.F.L.C., Chipiakoff, D., Bylaardt, H.F., Mendes, T.A.A., 2015. Folha Espinosa, escala 1:100.000. In:Pedrosa-Soares A. C., Voll E., Profeta L. (coord.). Projeto Fronteiras de Minas Gerais. CODEMIG/UFMG, Belo Horizonte, 51 pp
    [64]
    Kuribara, Y., Tsunogae, T., Santosh, M., Takamura, Y., Costa, A.G., Rosiere, C.A., 2019. Eoarchean to Neoproterozoic crustal evolution of the Mantiqueira and the Juiz de Fora Complexes, SE Brazil:Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes. Precambr. Res. 323, 82-101
    [65]
    Laurent, O., Rapopo, M., Stevens, G., Moyen, J.F., Martin, H., Doucelance, R., Bosq, C., 2014. Contrasting petrogenesis of Mg-K and Fe-K granitoids and implications for post-collisional magmatism:Case study from the Late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196-197, 131-149
    [66]
    Laurent, O., Couzinié, S., Zeh, A., Vanderhaeghe, O., Moyen, J.F., Villaros, A., Gardien, V., Chelle-Michou, C., 2017. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution:U-Pb dating in the eastern French Massif Central. Int. J. Earth. Sci. 106(2), 421-451
    [67]
    Leal, V.L.S., Kuchenbecker, M., Barbuena, D., Queiroga, G., Pinheiro, M.A.P., Freimann, M.A., 2021. Geochemistry and U-Pb zircon ages of the metamafic-ultramafic rocks of the Riacho dos Machados metavolcanosedimentary sequence:Evidence of a late Rhyacian back-arc basin during the assembly of São Francisco-Congo paleocontinent. J. South. Am. Earth. Sci. 105, 102972
    [68]
    Liégeois, J-P., Naves, J., Hertogen, J., Black, R., 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45, 1-28
    [69]
    Liu, D., Zhao, Z.D., Zhu, D.C., Wang, Q., Sui, Q.L., Liu, Y.S., Hu, Z.C., Mo, X.X., 2011. The petrogenesis of post-collisional potassic-ultrapotassic rocks in Xungba basin, western Lhasa terrane:constraints from zircon U-Pb geochronology and geochemistry. Acta Petrol. Sin. 27, 2045-2059
    [70]
    Liu, D., Zhao, Z., Zhu, D.C., Niu, Y., Harrison, T.M., 2014. Zircon xenocrysts in Tibetan ultrapotassic magmas:imaging the deep crust through time. Geology 42, 43-46
    [71]
    Marinho, K.S.M., 2014. Petrogênese do Granulito Pedra Dourada, MG. M.S. Thesis, Universidade Federal de Ouro Preto, 195 pp (in Portuguese)
    [72]
    Martin, H., Peucat, J.J., Sabaté, P., Cunha, J.C., 1997. Crustal evolution in the early Archean of South America:example of the Sete Voltas Massif, Bahia State, Brazil. Precambr. Res. 82, 35-62
    [73]
    McDonough, W.F., Sun, W., 1995. The composition of the Earth. Chem. Geol. 120 (3-4), 223-253
    [74]
    McKenzie, D.P., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth. Planet. Sci. Lett. 95, 53-72
    [75]
    Medeiros Júnior, E.B., 2016. Evolução petrogenética de terrenos granulíticos os estados de Minas Gerais e Espírito Santo. Ph.D. Thesis, Universidade Federal de Ouro Preto, 273 pp (in Portuguese)
    [76]
    Medeiros, L.M.M., Cruz, S.C.P., Barbosa, J.S.F., Paquette, J.L., Peucat, J.J., Jesus, S.S.G.P., Barbosa, R.G., Brito, R.S.C., Carneiro, M.A., 2017. The Santa Izabel Complex, Gavião Block, Brazil:Components, geocronology, regional correlations and tectonic implications. J. South. Am. Earth. Sci. 80, 66-94
    [77]
    Mesquita, M.J., Bitencourt, M.F., Nardi, L.S., Picanço, J., Chemale Jr, F., Pimenta, V.A., 2017. Rhyacian A-type tholeiitic granites in southern Brazil:Geochemistry, U-Pb zircon ages and Nd model ages. Lithos 277, 92-108
    [78]
    Middlemost, E.A.K., 1994. Naming materials in magma/igneous rock system. Earth-Sci. Rev. 37, 215-224
    [79]
    Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6), 529-532
    [80]
    Moreira, H., Lana, C., Nalini, H.A.N., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambr. Res. 275, 84-99
    [81]
    Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C., 2018. Evolution of Siderian juvenile crust to Rhyacian high Ba-Sr magmatism in the Mineiro Belt, southern São Francisco Craton. Geosci. Front. 4, 977-995
    [82]
    Moreira, H., Cassino, L., Lana, C., Storey, C., Albert, C., 2019. Insights into orogenic processes from drab schists and minor intrusions:Southern São Francisco Craton, Brazil. Lithos 346-347, 105146
    [83]
    Moreira, H., Storey, C., Fowler, M., Seixas, L., Dunlop, J., 2020. Petrogenetic processes at the tipping point of plate tectonics:Hf-O isotope ternary modelling of Earth's last TTG to sanukitoid transition. Earth. Planet. Sci. Lett. 551, 116558
    [84]
    Morrison, G.W., 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos 13, 97-108
    [85]
    Mourão, M.A.A., Grossi-Sad, J.H., Fonseca, E., 1997. Geologia da Folha Janaúba. In:Grossi-Sad J.H., Lobato L.M., Pedrosa-Soares A.C., Soares-Filho B.S. (coordenadores e editores). PROJETO ESPINHAÇO EM CD-ROM (textos, mapas e anexos). COMIG, Belo Horizonte, pp. 9-123 (in Portuguese)
    [86]
    Moyen, J-F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A., Gardien, V., 2017. Collision vs. subduction-related magmatism:Two contrasting ways of granite formation and implications for crustal growth. Lithos 15, 154-177
    [87]
    Müller, D., Groves, D.I., 2016. Potassic Igneous Rocks and Associated Gold-Copper Mineralization, 4th ed. Springer, New York, 311 pp
    [88]
    Noce, C.M., Pedrosa-Soares, A.C., Silva, L.C., Armstrong, R., Piuzana, D., 2007. Evolution of polycyclic basement complexes in Araçuaí Orogen, based on U-Pb SHRIMP data:Implicatons for Brazil-Africa links in Paleoproterozoic time. Precambr. Res. 159, 60-78
    [89]
    Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archaean granitoids from the Contendas-Mirante area of the Sao Francisco craton, Bahia, Brazil. Precambr. Res. 63, 179-188
    [90]
    Oliveira, E.P., McNaughton, N.J., Armstrong, R., 2010. Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna-Salvador-Curaca orogen, Sao Francisco craton, Brazil. Geol. Soc. Spec. Publ. 338, 263-286
    [91]
    Oliveira, E.P., McMaughton, N., Zincone, S., Talavera, C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga Gneisses of the Mairi Gneiss Complex. Terra Nova 32, 281-289
    [92]
    Padilha, A.L., Vitorello, I., Pádua, M.B., Fuck, R.A., 2019. Magnetotelluric images of Paleoproterozoic accretion and Mesoproterozoic to Neoproterozoic reworking processes in the northern São Francisco Craton, central-eastern Brazil. Precambr. Res. 333, 105416
    [93]
    Paim, M.M., 2014. Maciço de Cara Suja:Expressão do magmatismo alcalino potássico pós-colisional no sudoeste da Bahia. PhD Thesis, Universidade Federal da Bahia, 188 pp (in Portuguese)
    [94]
    Paquette, J.L., Barbosa, J.S.F., Rohais, S., Cruz, S.C.P., Gonçalves, P., Peucat, J.J., Leal, A.B.M., Santos-Pinto, M., Martin, H., 2015. The geological roots of South America, 4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambr. Res. 271, 49-55
    [95]
    Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate margins. In:Thorp, R.S. (Ed.), Andesites. John Wiley, New York, pp. 525-548
    [96]
    Pearce, J.A., 1983. Role of sub-continental lithosphere in magma genesis at active margins. In:Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Publishers, Nantwich, UK, pp. 230-249
    [97]
    Pearce, J.A., Harris, N.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol 25, 956-983
    [98]
    Peccerillo, A., 1992. Potassic and ultrapotassic rocks:compositional characteristics, petrogenesis, and geologic significance. Episodes 15, 243-251
    [99]
    Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63-81
    [100]
    Plá Cid, J., Rios, D.C., Conceicão, H., 2006. Petrogenesis of mica-amphibole-bearing lamprophyres associated with the Paleoproterozoic Morro do Afonso syenite intrusion, eastern Brazil. J. South. Am. Earth. Sci. 22, 98-115
    [101]
    Plá Cid, J., Campos, C., Nardi, L.V.S., Florisbal, L., 2012. Petrology of Gameleira Potassic Lamprophyres, São Francisco Craton. An. Acad. Bras. Cienc. 84(2), 377-398
    [102]
    Rios, D.C., Conceição, H., Davis, D.W., Plá Cid, J., Rosa, M.L.S., Macambira, M.J.B., McReath, I., Marinho, M.M., Davis, W.J., 2007. Paleoproterozoic potassic-ultrapotassic magmatism:Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambr. Res. 154, 1-30
    [103]
    Rios, D. Davis, D., Conceicao, H., Rosa, M., Davis, W., Dickin, A., Marinho, M., Stern, R., 2008. 2.10Ga history of crust formation from zircon geochronology and isotope geochemistry of the Quijingue and Euclides plutons, Serrinha nucleus, Brazil. Precambr. Res. 167, 53-70
    [104]
    Rios, D.C., Davis, D.W., Conceição, H., Davis, W.J., Rosa, M.L.S., Dickin, A.P., 2009. Geologic evolution of the Serrinha nucleus granite greenstone terrane (NE Bahia, Brazil) constrained by U Pb single zircon geochronology. Precambr. Res. 170, 175-201
    [105]
    Rodrigues, J.B., Guimarães, J.T., Borges, V.P., Carvalho, C.B., Nogueira, A.C., 2012. Ryacian zircon age of metabasaltic rocks from Riacho de Santana Greenstone Belt, Bahia (Brazil). VIII South American Symposium on Isotope Geology. Medellin. CDROM
    [106]
    Roque, N.C., Grossi-Sad, J.H., Noce, C.M., Fonseca, E., 1997. Geologia da Folha Rio Pardo de Minas. In:Grossi-Sad J.H., Lobato L.M., Pedrosa-Soares A.C., Soares-Filho B.S. (coordenadores e editores). PROJETO ESPINHAÇO EM CD-ROM (textos, mapas e anexos). COMIG, Belo Horizonte, pp. 125-221 (in Portuguese)
    [107]
    Rosa, M.L.S., 1999. Geologia, Geocronologia, Mineralogia, Litogeoquímica e Petrologia do Batólito Monzo-Sienítico Guanambi-Urandi (SW-Bahia). PhD Thesis, Universidade Federal da Bahia, 186 pp (in Portuguese)
    [108]
    Rosa, M.L.S., Conceição, H., Paim, M.M., Santos, E.B., Alves da Silva, F.C., Leahy, G.A.S., Bastos Leal, L.R., 1996. Magmatismo potássico/ultrapotássico pós a tardi-orogênico (associado a subducção) no oeste da Bahia:Batólito Monzo-Sienítico de Guanambi-Urandi e os Sienitos de Correntina. Geochim. Bras. 10(1), 27-42 (in Portuguese)
    [109]
    Rosa, M.L.S., Conceição, H., Oberli, F, Meier, M., Martin, H., Macambira, M.J.B., Santos, E.B., Paim, M.M., Leahy, G.A.S., Leal, L.R.B., 2000. Geochronology (U-Pb/Pb-Pb) and isotopic signature (Rb-Sr/Sm-Nd) of the Paleoproterozoic Guanambi batolith, southwestern Bahia State (NE Brazil). Rev. Bras. Geocienc. 30(1), 62-65
    [110]
    Rudnick R.L., Gao S., 2003. The Composition of the Continental Crust. In:Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, Vol. 3. The Crust. Elsevier-Pergamon, Oxford, 1-64
    [111]
    Santos, E.B., 2005. Magmatismo Alcalino-Potássico paleoproterozoico no sudoeste da Bahia e nordeste de Minas Gerais:Evidência de plutonismo orogênico associado a arco continental. PhD Thesis Salvador, Universidade Federal da Bahia, 218 pp (in Portuguese)
    [112]
    Santos Pinto, M., Peucat, J.J., Martin, H., Sabate, P., 1998. Recycling of the Archaean continental crust:the case study of the Gaviao Block, Bahia, Brazil. J. South. Am. Earth. Sci. 11, 487-498
    [113]
    Santos, E.B., Rosa, M.L.S., Conceição, H., Macambira, M.J.B., Scheller, T., Paim, M.M., Leahy, G.A.S., 2000. Magmatismo alcalino-potássico paleoproterozoico no SW da Bahia e NE de Minas Gerais, Maciço do Estreito:Geologia, idade, petrografia e litogeoquímica. Geochim. Bras.14 (2), 249-267 (in Portuguese)
    [114]
    Seixas, L.A.R., David, J., Stevenson, R., 2012. Geochemistry, Nd isotopes and U-Pbgeochronology of a 2350 Ma TTG suite, Minas Gerais, Brazil:implications forthe crustal evolution of the southern São Francisco craton. Precambr. Res. 196-197, 61-80
    [115]
    Sena, V.H., Oliveira, A.L.R., Chaves, A.O., 2018. Petrologia das suítes Paleoproterozoicas Paciência e Catolé da porção setentrional do domínio Porteirinha. Geonomos 26(1), 43-50 (in Portuguese)
    [116]
    Serrano, P., Pedrosa-Soares, A., Medeiros-Junior, E., Fonte-Boa, T., Araujo, C., Dussin, I., Queiroga, G., Lana, C., 2018. A-type Medina batholith and post-collisional anatexis in the Araçuaí orogen (SE Brazil). Lithos 320-321, 515-536
    [117]
    Simon, M.B., Bongiolo, E.M., Ávila, C.A., Oliveira, E.P., Teixeira, W., Stohler, R.C., Oliveira, F.V.S., 2018. Neoarchean reworking of TTG-like crust in the southernmost portion of the São Francisco Craton:U-Pb zircon dating and geochemical evidence from the São Tiago Batholith. Precambr. Res. 314, 353-376
    [118]
    Sun, C.G., Zhao, Z.D., Mo, X.X., Zhu, D.C., Dong, G.C., Zhou, S., Dong, X., Xie, G.G., 2007. Geochemistry and origin of the Miocene Sailipu ultrapotassic rocks on western Lhasa block, Tibetan Plateau. Acta Petrol. Sin. 23, 2715-2726 (in Chinese with English abstract)
    [119]
    Teixeira, W., Ávila, C.A., Dussin, I.A., Corrêa Neto, A.V., Bongiolo, E.M., Santos, J.O., Barbosa, N.S., 2015. A juvenile accretion episode (2.35-2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny:Zircon U-Pb-Hf andgeochemical evidences. Precambr. Res. 256, 148-169
    [120]
    Teixeira, W., Oliveira, E.P., Marques, L.S., 2017. Nature and Evolution of the Archean Crust of the São Francisco Craton. In:Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.), São Francisco Craton, Eastern Brazil:Tectonic Genealogy of a Miniature Continent. Springer International Publishing, Switzerland, pp. 29-56
    [121]
    Teles, G., Chemale Jr, F., Oliveira, C.G., 2015. Paleoarchean record of the detrital pyrite-bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambr. Res. 256, 289-313
    [122]
    Thibautl, Y., Edgar, A.D., Lloyd, F.E., 1992. Experimental investigation of melts from a carbonated phlogopite lherzolite:Implications for matasomatism in the continental lithosphere. Amer. Miner. 77, 784-794
    [123]
    Thompson, R.N., Fowler, M.B., 1986. Subduction-related shoshonitic and ultrapotassic magmatism:a study of Siluro-Ordovician syenites from the Scottish Caledonides. Contrib. Mineral. Petrol. 94(4), 507-522
    [124]
    Valeriano, C.M., Mendes, J.C., Tupinambá, M., Bongiolo, E., Heilbron, M., Junho, M.C.B., 2016. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil:A case of terminal magmatism of a hot orogeny. J. South. Am. Earth. Sci. 68, 269-281
    [125]
    Wang, X., Wang, T., Jahn, B-M., Hu, N., Chen, W., 2007. Tectonic significance of Late Triassic post-collisional lamprophyre dykes from the Qinling Mountains (China). Geol. Mag. 144(5), 837-848
    [126]
    Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295-304
    [127]
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 95, 407-419
    [128]
    Woodhead, J.D., Hergt, J.M., Davidson, J.P., and Eggins, S.M., 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192, 331-346
    [129]
    Zhao, Z., Mo, X., Dilek, Y., Niu, Y., DePaolo, D.J., Robinson, P., Zhu, D., Sun, C., Dong, G., Zhou, S., Luo, Z., Hou, Z., 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113, 190-212
    [130]
    Zincone, S.A., Oliveira, E.P., Laurent, O., Zhang, H., Zhai, M., 2016. 3.30 Ga high-silica intraplate volcanic-plutonic system of the Gavião Block, São Francisco Craton, Brazil:Evidence of an intracontinental rift following the creation of insulating continental crust. Lithos 266-267, 414-434
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return