Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Evandro L. Klein, Joseneusa B. Rodrigues. Lu-Hf constraints on pre-, syn, and post-collision associations of the Gurupi Belt, Brazil: Insights on the Rhyacian crustal evolution[J]. Geoscience Frontiers, 2022, 13(5): 101199. doi: 10.1016/j.gsf.2021.101199
Citation: Evandro L. Klein, Joseneusa B. Rodrigues. Lu-Hf constraints on pre-, syn, and post-collision associations of the Gurupi Belt, Brazil: Insights on the Rhyacian crustal evolution[J]. Geoscience Frontiers, 2022, 13(5): 101199. doi: 10.1016/j.gsf.2021.101199

Lu-Hf constraints on pre-, syn, and post-collision associations of the Gurupi Belt, Brazil: Insights on the Rhyacian crustal evolution

doi: 10.1016/j.gsf.2021.101199
Funds:

fico e Tecnoló

gico" (CNPq) to the first author (research grant 306798/2016-6). We thank the invitation of the editors of the special issue to write this contribution, and the comments and suggestions of two anonymous reviewers, who helped to improve the final version of the manuscript.

This paper is mostly an outcome of institutional projects developed by CPRM/Geological Survey of Brazil in the Gurupi Belt, with the additional support of the Brazilian "Conselho Nacional de Desenvolvimento Cientí

  • Received Date: 2020-10-31
  • Accepted Date: 2021-03-20
  • Rev Recd Date: 2021-03-12
  • Publish Date: 2021-04-05
  • The Gurupi Belt (together with the São Luís cratonic fragment), in north-northeastern Brazil, has been described in previous studies that used extensive field geology, structural analysis, airborne geophysics, zircon U-Pb dating, and whole-rock Sm-Nd isotope and geochemical data as a polyphase orogenic belt, with the Rhyacian being the main period of crust formation. This was related to a 2240 Ma to 2140 Ma accretionary processes that produced juvenile crust, which has subsequently been reworked during a collisional event at 2100 ±20 Ma, with little evidence of Archean crust. In this study, we use Lu-Hf isotopic data in zircon from granitoids (including gneiss) of variable magmatic series, and amphibolite to improve the knowledge of this scenario, and investigate additional evidence of recycling of Archean basement. Pre-collisional high Ba-Sr and ferroan granitoids and amphibolite formed in island arc (2180-2145 Ma), show only zircons with suprachondritic εHf values (ca. +1 to +8) indicating the large predominance of juvenile magmas. Only 10% of the data show slightly negative εHf values (0 to -4), which have been observed in granodiorite-gneiss formed in continental arc (2170-2140 Ma), and in strongly peraluminous collisional granites (2125-2070 Ma), indicating the rework of older Paleoproterozoic to Archean components (HfTDM=2.11-3.69 Ga). A two-component mixing model using both Hf and published Nd isotope data are in line with this interpretation and indicate more than 90% of juvenile material, and less influence of Archean materials. Comparing with other Rhyacian terranes that are interpreted to have been close to Gurupi in a pre-Columbia configuration (ca. 2.0 Ga), our results differ from those of SE-Guiana Shield, which show strong influence of Archean protoliths, and are very similar to those of the central-eastern portion of the Baoulé-Mossi Domain of the West African Craton, which has also been formed largely by juvenile magmas in an accretionary-collisional orogen.
  • loading
  • [1]
    Abreu, F.A.M., 1990. Evolução geotectônica do pré-cambriano da região Meio Norte do Brasil e sua correlação com a África Ocidental. Ph.D. thesis. Universidade Federal do Pará, Belém, 440 p (in Portuguese)
    [2]
    Abati, J., Aghzer, A.M., Gerdes, A., Ennih, N., 2012. Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambrian Res. 212, 263-274
    [3]
    São Francisco Craton, Eastern Brazil:Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews
    [4]
    Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces:an introduction. Earth Sci. Rev. 17, 1-21
    [5]
    Andersen, T., Andersen, U.B., Graham, S., Åberg, G., Simonsen, S.L., 2009. Granitic magmatism by melting of juvenile continental crust:new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol. Soc. 166, 233-247
    [6]
    Bahlburg, H., Vervoort, J.D., DuFrane, S.A., Carlotto, V., Reimann, C., Cárdenas, J., 2011. The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia. J. S. Am. Earth Sci. 32, 196-209. https://doi.org/10.1016/j.jsames.2011.07.002
    [7]
    Barreto, C.J.S., Lafon, J.M., Rosa-Costa, L.T., Dantas, E.L., 2013. Paleoproterozoic granitoids from the northern limit of the Archean Amapá Domain (Brazil), Southeastern Guyana Shield:Pb-Pb evaporation in zircons and Sm-Nd geochronology. J. S. Am. Earth Sci. 45, 97-116
    [8]
    Bertotti, A.L., Chemale Jr., F., 2005. Lu-Hf Analysis by LA-MC-ICP-MS:Methods and Application in Capivarita Anorthosithe Zircons. Cadernos de Geociências 12 (1-2), 1-13
    [9]
    Blichert-Toft, J., Albarède, F., Rosing, M., Frei, R., Bridgwater, D., 1999. The Nd and Hf isotopic evolution of the mantle through the Archean. results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochem. Cosmochim. Acta 63, 22, 3901-3914
    [10]
    Block, S., Baratoux, L., Zeh, A., Laurent, O., Bruguier, O., Jessell, M., Aillères, L., Sagna, R., Parra-Avila, L.A., Bosch, D., 2016. Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana):New insights from U-Pb-Hf zircon data and geochemistry. Precambrian Res. 287, 1-30
    [11]
    Boher, M., Abouchami, W., Michard, A., Albarede, F., Arndt, N.T., 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research:Solid Earth 97(B1), 345-369
    [12]
    Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48-57
    [13]
    Brito Neves, B.B., Fuck, R.A., Cordani, U.G., Thomaz Filho, A., 1984. Influence of basement structures on the evolution of the major sedimentary basins of Brazil:a case of tectonic heritage. J. Geodynam. 1, 495-510
    [14]
    Castro, D.L., Fuck, R.A., Phillips, J.D., Vidotti, R.M., Bezerra, F.H.R., Dantas, E.L., 2014. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophy. 614, 128-145
    [15]
    Chaves, A.O., 2021. Columbia (Nuna) supercontinent with external subduction girdle and concentric accretionary, collisional and intracontinental orogens permeated by large igneous provinces and rifts. Precambrian Res 352, 106017
    [16]
    Condie, K.C., 2014. Growth of continental crust:a balance between preservation and recycling. Mineral. Magaz. 78, 623-637
    [17]
    Cordani, U.G., Sato, K., 1999. Crustal evolution of the South American Platform, based on Nd isotopic systematics on granitoid rocks. Episodes 22, 167-173
    [18]
    Costa, F.G., Klein, E.L., Lafon, J.M., Milhomem Neto, J.M., Galarza, M.A., Rodrigues, J.B., Naleto, J.L.C., Corrêa-Lima, R.G., 2018. Geochemistry and U-Pb-Hf zircon data for plutonic rocks of the Troia Massif, Borborema Province, NE Brazil:Evidence for reworking of Archean and juvenile Paleoproterozoic crust during Rhyacian accretionary and collisional tectonics. Precambrian Res. 311, 167-194
    [19]
    D'Agrella-Filho, M.S., Bispo-Santos, F., Trindade, R.I.F., Antonio, P.Y.J., 2016. Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Brazil. J. Geol. 46, 275-299. DOI: 10.1590/2317-4889201620160055
    [20]
    Daly, M.C., Andrade, V., Barousse, C.A., Costa, R., Mcdowell, K., Piggott, N., Poole A.J., 2014. Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil:Results of a deep seismic reflection profile, Tectonics 33, 1-19. https://doi.org/10.1002/2014TC003632
    [21]
    DePaolo, D.J., 1988. Neodymium Isotope Geochemistry. An introduction. Berlin, Springer-Verlag, 187 pp
    [22]
    Delor, C., Lahondère, D., Egal, E., Lafon, J.M., Cocherie, A., Guerrot, C., Rossi, P., Truffert, C., Theveniaut, H., Phillips, D., Avelar, V.G., 2003. Transamazonian crustal growth and reworking as revealed by the 1:500.000-scale geological map of French Guiana (2nd edition). Géologie de la France-special Guiana Shield. BRGM -SGF Editor 2-3-4, 5-58.
    [23]
    Doumbia, S., Pouclet, A., Kouamelan, A., Pecaut, J.J., Vidal, M., Delor, C., 1998. Petrogenesis of juvenile-type Birimian (Paleoproterozoic) granitoids in Central Côte-d'Ivoire, West Africa:geochemistry and geochronology. Precambrian Res. 87, 33-63
    [24]
    Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When continents formed. Science 331, 154-155
    [25]
    Dhuime, B., Hawkesworth, C.J., Delavault, H., Cawood, P.A., 2018. Rates of generation and destruction of the continental crust:implications for continental growth. Phil. Trans. R. Soc. A 376, 20170403. http://dx.doi.org/10.1098/rsta.2017.0403
    [26]
    Eglinger, A., Thebaud, N., Zeh, A., Davis, J., Miller, J., Parra-Avila, L.A., Loucks, R., McCuaig, C., Belousova, E., 2017. New insights into the crustal growth of the Paleoproterozoic margin of the Archean Kéména-Man domain, West African craton (Guinea):Implications for gold mineral system. Precambrian Res. 292, 258-289
    [27]
    Fuck, R.A., Dantas, E.L., Pimentel, M.M., Botelho, N.F., Armstrong, R., Laux, J.H., Junges, S.L., Soares, J.E., Praxedes, I.F., 2014. Paleoproterozoic crust-formation and reworking events in the Tocantins Province, central Brazil:A contribution for Atlantica supercontinent reconstruction. Precambrian Res. 244, 53-74
    [28]
    Gasquet, D., Barbey, P., Adou, M., Paquette, J.L., 2003. Structure, Sr-Nd isotope geochemistry and zircon U-Pb geochronology of the granitoids of the Dabakala area (Côte d'Ivoire):evidence for a 2.3 Ga crustal growth event in the Palaeoproterozoic of West Africa? Precambrian Res. 127, 329-354
    [29]
    Grenholm, M., Jessell, M., Thébaud, N., 2019. A geodynamic model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the southern West African Craton-Insights into an evolving accretionary-collisional orogenic system. Earth Sci. Rev.192, 138-193
    [30]
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Van Achterbergh, ÓReilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in Kimberlites. Geochem. Cosmochim. Acta 64, 133-147
    [31]
    Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Zhou, X., 2002. Zircon chemistry and magma genesis, SE China:in-situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 61, 237-269
    [32]
    Hasui, Y., Abreu, F.A.M., Villas, R.N.N., 1984. Província Parnaíba. In:Almeida, F.F.M., Hasui, Y. (Eds.). O Pré-Cambriano no Brasil. São Paulo, Edgard Blücher, pp. 36-45 (in Portuguese)
    [33]
    Hawkesworth, C.J., Kemp, A.I.S., 2006. Using hafnium and oxygen isotopes in zircon to unravel the record of crustal evolution. Chem. Geol. 226, 144-162
    [34]
    Hawkesworth, C., Cawood, P.A. Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165-173
    [35]
    Hurley, P.M., Almeida, F.F.M., Melcher, G.C., Cordani, U.G., Rand, J.R., Kawashita, K., Vandoros, P., Pinson, W.H., Fairbairn, H.W., 1967. Test of continental drift by comparison of radiometric ages. Science 157, 495-500
    [36]
    Kemp, A.I.S., Hawkesworth, C.J., Collins, W.J., Gray, C.M., Blevin, P.L., 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen:the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455-466
    [37]
    Geol. Soc. London, Spec. Publ
    [38]
    Klein, E.L., Luzardo, R., Moura, C.A.V., Armstrong, R., 2008. Geochemistry and zircon geochronology of Paleoproterozoic granitoids:further evidence on the magmatic and crustal evolution of the São Luís cratonic fragment, Brazil. Precambrian Res. 165, 221-242
    [39]
    Klein, E.L., Luzardo, R., Moura, C.A.V., Lobato, D.C., Brito, R.S.C., Armstrong, R., 2009. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil:implications for tectonic setting and crustal evolution. J. S. Am. Earth Sci. 27, 129-145
    [40]
    Klein, E.L., Rodrigues, J.B., Lopes, E.C.S., Soledade, G.L., 2012. Diversity of Rhyacian granitoids in the basement of the Neoproterozoic-Early Cambrian Gurupi Belt, northern Brazil:geochemistry, U-Pb zircon geochronology, and Nd isotope constraints on the Paleoproterozoic magmatic and crustal evolution. Precambrian Res. 220-221, 192-216
    [41]
    Klein, E.L., Lopes, E.C.S., Rodrigues, J.B., Souza-Gaia, S.M., Cordani, U.G., 2020a. Rhyacian and Neoproterozoic magmatic associations of the Gurupi Belt, Brazil:Implications for the tectonic evolution, and regional correlations. Geosci. Front. 11, 2243-2269. https://doi.org/10.1016/j.gsf.2020.02.016
    [42]
    Klein, E.L., Rodrigues, J.B., Lopes, E.C.S., Oliveira, R.G., Souza-Gaia, S.M., Oliveira, L.B.T., 2020b. Age, provenance and tectonic setting of metasedimentary sequences of the Gurupi Belt and São Luís cratonic fragment, northern Brazil:Broadening the understanding of the Proterozoic-Early Cambrian tectonic evolution. Precambrian Res. 351, 105950. https://doi.org/10.1016/j.precamres.2020.105950
    [43]
    Kramers, J.D., Zeh, A., 2011. A review of Sm-Nd and Lu-Hf isotope studies in the Limpopo Complex and adjoining cratonic areas, and their bearing on models of crustal evolution and tectonism. In:van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds.), Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geol. Soc. Am. Memoir 207, p. 163-188. https://doi.org/10.1130/2011.1207(10)
    [44]
    Laurent, O., Zeh, A., 2015. A simple Hf isotope-age array despite different granitoid sources and complex Archean geodynamics:an example from the Pietersburg block (South Africa). Earth Planet. Sci. Lett. 430, 326-338
    [45]
    Lopes, E.C.S., Klein, E.L., Moura, C.A.V., Lucas, F.R.A., Pinheiro, B.L.S., Rodrigues, J.B., Simas, M.W., 2016. U-Pb (LA-ICP-MS) of detrital zircon and whole rock Nd and geochemical constraints on the provenance, depositional age and tectonic setting of the metasedimentary Piriá Basin, northern Brazil:implications for the evolution of the Gurupi Belt. Brazil. J. Geol. 46, 123-144
    [46]
    McFarlane, H.B., Thébaud, N., Parra-Avila, L.A., Armit, R., Spencer, C., Ganne, J., Allières, L., Baratoux, L., Betts, P.G., Jessell, M.W., 2019. Onset of the supercontinent cycle:Evidence for multiple oceanic arc accretion events in the Paleoproterozoic Sefwi Greenstone Belt of the West African Craton. Precambrian Res. 335, 105450
    [47]
    Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Res. 50, 67-83
    [48]
    Milhomem Neto, J.M., Lafon, J.M., 2019. Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield. Geosci. Front. 10, 1477-1506
    [49]
    Milhomem Neto, J.M., Lafon, J.M., 2020. Crustal growth and reworking of Archean crust within the Rhyacian domains of the southeastern Guiana Shield, Brazil:Evidence from zircon U-Pb-Hf and whole-rock Sm-Nd geochronology. J.S. Am. Earth Sci. 103, 102740
    [50]
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231-235
    [51]
    Nunes, K.C., 1993. Interpretação integrada da Bacia do Parnaíba com ênfase nos dados aeromagnéticos. In:Congresso Internacional da Sociedade Brasileira de Geofísica, 2, Resumos Expandidos, 1, 152-157 (in Portuguese).
    [52]
    Palheta, E.S., Abreu, F.A.M., Moura, C.A.V., 2009. Granitóides proterozóicos como marcadores da evolução geotectônica da região nordeste do Pará. Brasil. Rev. Brasi. Geoc. 39, 647-657 (in Portuguese)
    [53]
    Parra-Avila, L.A., Belousova, E., Fiorentini, M.L., Eglinger, A., Block, S., Miller, J., 2018. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton. Precambrian Res. 306, 174-188
    [54]
    Parra-Avila, L.A., Baratoux, L., Eglinger, A., Fiorentini, M.L., Block, S., 2019. The Eburnean magmatic evolution across the Baoulé-Mossi domain:Geodynamic implications for the West African Craton. Precambrian Res. 332, 105392
    [55]
    Patchett, P.J., Tatsumoto, M., 1980. Lu-Hf total rock isochron for the eucrite meteorites. Nature 288, 571-574
    [56]
    Patchett, P.J., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1981. Evolution of continental crust and mantle heterogeneity:evidence from Hf isotopes. Contrib. Mineral. Petrol. 78, 279-297
    [57]
    Patchett, P.J., Bridgwater, D.R., 1984. Origin of continental crust of 1.9-1.7 Ga age defined by Nd isotopes in the Ketilidian terrain of South Greenland. Contrib. Mineral. Petrol. 87, 311-318. https://doi.org/10.1007/BF00381287
    [58]
    Payne, J.L., McInerney, D.J., Barovich, K.M., Kirkland, C.L., Pearson, N.J., Hand, M., 2016. Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos 248-251, 175-192
    [59]
    Petersson, A., Sherstén, A., Kemp, A.I.S., Kristinsdóttir, B., Kalvig, P., Anum, S., 2016. Zircon U-Pb-Hf evidence for subduction related crustal growth and reworking of Archaean crust within the Palaeoproterozoic Birimian terrane, West African Craton, SE Ghana. Precambrian Res. 275, 286-309
    [60]
    Petersson, A., Sherstén, A., Gerdes, A., 2018. Extensive reworking of Archaean crust within the Birimian terrane in Ghana as revealed by combined zircon U-Pb and Lu-Hf isotopes. Geoscience Frontiers 9, 173-189
    [61]
    Pisarevsky, S.A., Elming, S.A., Pesonen, L.J., Li, Z.X., 2014. Mesoproterozoic paleogeography:Supercontinent and beyond. Precambrian Res. 244, 207-225
    [62]
    Pollock, J.C., Sylvester, P.J., Barr, S.M., 2015. Lu-Hf zircon and Sm-Nd whole-rock isotope constraints on the extent of juvenile arc crust in Avalonia:examples from Newfoundland and Nova Scotia, Canada. Canadian J. Earth Sci. 52, 161-181. dx.doi.org/10.1139/cjes-2014-0157
    [63]
    Roberts, N.M.W., 2013. The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci. Front. 4, 681-691
    [64]
    Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 5, 5-22
    [65]
    Rosa-Costa, L.T., Monié, P., Lafon, J.M., Arnaud, N.O., 2009. 40Ar-39Ar geochronology across Archean and Paleoproterozoic terranes from southeastern Guiana Shield (north of Amazonian Craton, Brazil):Evidence for contrasting cooling histories. J.S. Am. Earth Sci. 27, 113-128
    [66]
    Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In:Rudnick, R.L. (Ed.), The Crust. Treatise on Geochemistry, vol. 3. Elsevier-Pergamon, Oxford, pp. 1-64.
    [67]
    Sato, K., Siga Jr., O., 2002. Rapid Growth of Continental Crust Between 2.2 to 1.8 Ga in the South American Platform:Integrated Australian, European, North American and SW USA Crustal Evolution Study. Gondwana Res. 5, 165-173
    [68]
    Söderlund, U., Patchett, J.P., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusion. Earth Planet. Sci. Lett. 219, 311-324
    [69]
    Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geosci. Front. 11, 843-843
    [70]
    Sun, C., Xu, W., Cawood, P.A., Tang, J., Zhao, S., Li, Y., Zhang, X., 2019. Crustal growth and reworking:A case study from the Erguna Massif, eastern Central Asian Orogenic Belt. Sci. Rep. 9, 17671. https://doi.org/10.1038/s41598-019-54230-x
    [71]
    Tarney, J., Jones, C.E., 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. J. Geol. Soc., London 151, 855-868
    [72]
    Tavares, F.M., Klein, E.L., Campos, L.D., 2017. Tectônica. In:Klein, E.L., Lopes, E.C.S., Tavares, F.M., Campos, L.D., Souza-Gaia, S.M., Neves, M.P., Perrotta, M.M. (Eds.), Áreas de Relevante Interesse Mineral:Cinturão Gurupi. Informe de Recursos Minerais, 11, Série Províncias Minerais do Brasil, Brasília. CPRM-Serviço Geológico do Brasil, pp. 59-74 (in Portuguese).
    [73]
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution. Blackwell Scientific Publications, Oxford, pp. 1-312
    [74]
    Thirlwall, M.F., Anczkiewicz, R., 2004. Multi dynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrometry 235, 59-81
    [75]
    Torquato, J.R., Cordani, U.G., 1981. Brazil-Africa geological links. Earth Sci. Rev.17, 155-176
    [76]
    Vervoort, J.D., Kemp, A.I.S., 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem. Geol. 425, 65-75
    [77]
    Vianna, S.Q., Lafon, J.M., Milhomem Neto, J.M., Silva, D.P.B., Barros, C.E.M., 2020. U-Pb geochronology, Nd-Hf isotopes, and geochemistry of Rhyacian granitoids from the Paleoproterozoic Lourenço domain (Brazil), southeastern Guiana Shield. J.S. Am. Earth Sci. https://doi.org/10.1016/j.jsames.2020.102937.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return