Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Marco Aurélio Piacentini Pinheiro, George L. Guice, Joana Reis Magalhães. Archean-Ediacaran evolution of the Campos Gerais Domain-A reworked margin of the São Francisco paleocontinent (SE Brazil): Constraints from metamafic-ultramafic rocks[J]. Geoscience Frontiers, 2022, 13(5): 101201. doi: 10.1016/j.gsf.2021.101201
Citation: Marco Aurélio Piacentini Pinheiro, George L. Guice, Joana Reis Magalhães. Archean-Ediacaran evolution of the Campos Gerais Domain-A reworked margin of the São Francisco paleocontinent (SE Brazil): Constraints from metamafic-ultramafic rocks[J]. Geoscience Frontiers, 2022, 13(5): 101201. doi: 10.1016/j.gsf.2021.101201

Archean-Ediacaran evolution of the Campos Gerais Domain-A reworked margin of the São Francisco paleocontinent (SE Brazil): Constraints from metamafic-ultramafic rocks

doi: 10.1016/j.gsf.2021.101201
Funds:

o de Amparo à

Pesquisa de Minas Gerais (FAPEMIG

ã

206612/2014-1) and the Fundaç

o Motta. We would also like to thank editor Kathryn Cutts and two anonymous reviewers for their constructive comments on our manuscript.

The authors thank the Brazilian research institutions:National Council for Scientific and Technological Development (CNPq

process n°

process n°

CRA 1.058/04) for the financial assistance. The authors are also grateful to the Geological Survey of Brazil (SGB/CPRM) for the support. This paper benefited from comments from Joã

  • Received Date: 2020-09-30
  • Accepted Date: 2021-04-02
  • Rev Recd Date: 2021-03-23
  • Publish Date: 2021-04-06
  • The Campos Gerais Domain (CGD) in southeastern Brazil is an approximately 180 km×35 km area of Archean-Proterozoic rocks located southwest of the São Francisco Craton (SFC). The Archean-Paleoproterozoic evolution of the CGD-alongside its potential correlation with the SFC or other cratonic blocks in the region-is currently poorly-constrained. We present the results of systematic petrography, bulk-rock geochemistry, mineral chemistry and geochronology for a suite of scarcely studied mafic-ultramafic rocks from the CGD. We also provide a compilation of previously reported bulk-rock geochemical and spinel group mineral chemical data for mafic-ultramafic rocks throughout the CGD, and geochronological information for various lithotypes in the region. The CGD records a protracted Mesoarchean to Statherian (3.1-1.7 Ga) crustal evolution, which we interpret to share a common history with the southern SFC and their related reworked segments, suggesting that it is a westward extension of this cratonic terrain. The metavolcano-sedimentary rocks of the Fortaleza de Minas and Alpinópolis segments represent a Mesoarchean greenstone belt that is stratigraphically and chemically comparable to Archean greenstone belts worldwide, and that is broadly coeval with a local suite of tonalite-trondhjemite-granodiorite (TTG) gneisses and migmatites. U-Pb SHRIMP zircon data from a subalkaline metagabbro yielded a concordia age of ca. 2.96 Ga, revealing a previously unrecognized phase of Archean magmatism in the CGD that can be chrono-correlated with metakomatiite and TTG generation elsewhere in the São Francisco paleocontinent. Our data contradict a hypothesis whereby the metavolcano-sedimentary rocks of the Jacuí-Bom Jesus da Penha and Petúnia segments represent an ophiolite, as previously suggested, instead presenting features that point to formation in association with a continental arc. Coupled with a U-Pb (SHRIMP) crystallization age of ca. 2.13 Ga recorded by zircon grains from a metaultramafic rock, these data highlight that a magmatic event was chrono-correlated with the main accretionary phase of the Minas Orogeny, and with the Pouso Alegre/Amparo and São Vicente complexes. Finally, a U-Pb (SHRIMP) concordia age of ca. 590 Ma-obtained from metamorphic-textured zircon grains from a metaultramafic rock-points to a late metamorphic overprint related to upper amphibolite conditions, brittle fault activation and the juxtaposition of crustal blocks in association with the latest stages of western Gondwana's assembly in the southern SFC, with later retrogression to greenschist-facies.
  • loading
  • [1]
    Alkmim F.F., Teixeira W., 2017. The Paleoproterozoic Mineiro Belt and the Quadrilátero Ferrífero. In:Heilbron M., Cordani U., Alkmim F. (Eds.), São Francisco Craton, Eastern Brazil. Springer, Cham, https://doi.org/10.1007/978-3-319-01715-0_5.
    [2]
    Alkmim, F.F., Marshak, S., Fonseca, M.A., 2001. Assembling West Gondwana in the Neoproterozoic:clues from the Sao Francisco craton region, Brazil. Geology 29(4), 319-322. doi.org/10.1130/0091-7613(2001)029<0319:AWGITN>2.0.CO;2
    [3]
    Almeida, F.F.M., Brito Neves, B.B., Carneiro, C.D.R., 2000. The origin and evolution of the South American Platform. Earth-Sci. Rev. 50(1-2), 77-111. doi.org/10.1016/S0012-8252(99)00072-0
    [4]
    Almeida, F.F.M., Hasui Y., Brito-Neves, B.B de, Fuck, R.A., 1977. As Províncias Estruturais do Brasil. In:8° Simp. geol. do Nordeste, Sociedade Brasileira de Geologia. Boletim especial, 12 pp. (in Portuguese).
    [5]
    Anhaeusser, C.R., 2014. Archaean Greenstone Belts and Associated Granitic Rocks-A Review. J. Afr. Earth Sci. 100, 684-732. http://dx.doi.org/10.1016/j.jafrearsci.2014.07.019
    [6]
    Anhaeusser, C.R., 2015. Metasomatized and Hybrid Rocks Associated with a Palaeoarchaean Layered Ultramafic Intrusion on the Johannesburg Dome, South Africa. J. Afr. Earth Sci. 102, 203-217. dx.doi.org/10.1016/j.jafrearsci.2014.10.012
    [7]
    Armstrong, R.A., Compston, W., de Wit, M.J., and Williams, I.S., 1990. The Stratigraphy of the 3.5-3.2 Ga Barberton Greenstone Belt Revisited:A Single Zircon Ion Microprobe Study. Earth Planet. Sci. Lett. 101,1, 90-106. doi.org/10.1016/0012-821X(90)90127-J
    [8]
    Arndt, N., Lesher, C.M., Barnes, S.J., 2008. Komatiite. Cambridge University Press, Cambridge, 473p. doi.org/10.1017/CBO9780511535550
    [9]
    Arndt, N.T., Albarede, F., Nisbet, E.G., 1997. Mafic and Ultramafic Magmatism. In:De Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford University Press, Oxford, 233-254
    [10]
    Balis, M., Campos Neto, M.C., Alves, A., 2020. Serra do Barro Branco orthogneiss:An untimely record of West Gondwana amalgamation in the São Roque Domain. Precambrian Res. 350, 105913. doi.org/10.1016/j.precamres.2020.105913
    [11]
    Basei M.A.S., Siga Jr. O., Sato K., Sproesser W.M., 1995. A metodologia urânio-chumbo na Universidade de São Paulo:princípios metodológicos, aplicações e resultados obtidos. An. Acad. Bras. Ciênc. 67(2), 221-237 (in Portuguese with English abstract)
    [12]
    Batista, M.J., 2004. Geologia, petrografia e geoquímica de duas suites TTG do domínio norte do Complexo Campos Gerais, sudoeste de Minas Gerais. M.S. Thesis. Universidade Estadual de Campinas, 90 pp. http://repositorio.unicamp.br/handle/REPOSIP/287097 (in Portuguese with English abstract).
    [13]
    Barbosa, N., Leal, A.M., Debruyne, D., Leal, L.B., Barbosa, N.S., Marinho, M., Koproski, L.M., 2020. Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi-Correntina block, GCB, north São Francisco Craton, Brazil, unravelled by U-Pb Geochronology, Nd-Sr isotopes and geochemical constraints. Precambrian Res. 340, 105-614. doi.org/10.1016/j.precamres.2020.105614
    [14]
    Barbosa, N., Teixeira, W., Ávila, C. A., Montecinos, P. M., Bongiolo, E. M., Vasconcelos, F. F., 2019. U-Pb geochronology and coupled Hf-Nd-Sr isotopic-chemical constraints of the Cassiterita Orthogneiss (2.47-2.41-Ga) in the Mineiro belt, São Francisco craton:Geodynamic fingerprints beyond the Archean-Paleoproterozoic Transition. Precambrian Res. 326, 399-416. doi.org/10.1016/j.precamres.2018.01.017
    [15]
    Barnes, S.J. Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 42(12), 2279-2302. doi.org/10.1093/petrology/42.12.2279
    [16]
    Barros, R.A., Caxito, F.A., Egydio-Silva, M., Dantas, E. L., Pinheiro, M.A.P., Rodrigues, J.B., Sá Freitas, M., 2020. Archean and Paleoproterozoic crustal evolution and evidence for cryptic Paleoarchean-Hadean sources of the NW São Francisco Craton, Brazil:lithochemistry, geochronology, and isotope systematics of The Cristalândia do Piauí Block. Gondwana Res. 88, 268-295. doi.org/10.1016/j.gr.2020.07.004
    [17]
    Barton, M.D., Ilchik, R.P., 1991. Metasomatism in contact metamorphism. Mineralogical Society of America-Reviews in Mineralogy 26, 321-350. doi.org/10.1515/9781501509612-010
    [18]
    Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205 (1-2), 115-140
    [19]
    Brandl, G., Cloete, M., Anhaeusser, C.R., 2006. Archaean Greenstone Belts. Geology of South Africa 3, 9-25
    [20]
    Brenner, T.L., Teixeira, N.A., Oliveira, J.A.L., Franke, N.D., Thompson, J.F.H., 1990. The O'Toole nickel deposit, Morro do Ferro greenstone belt, Brazil. Econ. Geol. 85(5), 904-920. doi.org/10.2113/gsecongeo.85.5.904
    [21]
    Brown, M., Johnson, T., Gardiner, N.J., 2020. Plate Tectonics and the Archean Earth. Ann Rev Earth Planet Sci. 48, 291-320. doi.org/10.1146/annurev-earth-081619-052705
    [22]
    Brown, M., Johnson, T.E., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. Amer Miner. 103(2), 181-196. doi.org/10.2138/am-2018-6166
    [23]
    Bruno, H., Elizeu, V., Heilbron, M., de Morisson Valeriano, C., Strachan, R., Fowler, M., Tupinambá, M., 2020. Neoarchean and Rhyacian TTG-Sanukitoid suites in the southern São Francisco Paleocontinent, Brazil:evidence for diachronous change towards modern tectonics. Geosci Front. 11(5), 1763-1787. doi.org/10.1016/j.gsf.2020.01.015
    [24]
    Campos Neto M.C., Cioffi C.R., Moraes R., Motta R.G., Siga Jr. O., Basei M.A.S., 2010. Structural and metamorphic control on the exhumation of high-P granulites:The Carvalhos Klippe example, from the oriental Andrelândia Nappe System, southern portion of the Brasília Orogen, Brazil. Precambrian Res. 180, 125-142. doi.org/10.1016/j.precamres.2010.05.010
    [25]
    Campos Neto M.C., Basei M.A.S., Vlach S.R.F., Caby R., Szabó G.A.J., Vasconcelos, P., 2004. Migração de orógenos e superposição de orogêneses:Um esboço da colagem Brasiliana no sul do Cráton do São Francisco, SE-Brasil. Geologia USP, Série Científica, 4(1), 13-40. https://doi.org/10.5327/S1519-874x2004000100002 (in Portuguese with English abstract).
    [26]
    Campos Neto, M.C., Caby, R., 1999. Neoproterozoic high-pressure metamorphism and tectonic constraint from the nappe system south of the Sao Francisco Craton, Southeast Brazil. Precambrian Res. 97(1-2), 3-26
    [27]
    Carneiro M.S., Teixeira W., Carvalho-Júnior I.M., Pimentel M.M., Oliveira A.H., 2004. O comportamento dos sistemas Sm-Nd e Rb-Sr da Sequência Acamadada Máfico-Ultramafica Ribeirão dos Motas, Arqueano Craton São Francisco Meridional:Evidências de Enriquecimento Mantélico e Fracionamento Isotópico. Geologia USP, Série Científica 4(2), 13-26. https://doi.org/10.5327/S1519-874X2004000200002 (in Portuguese with English abstract).
    [28]
    Carneiro, M.A., Teixeira, W., de Carvalho Junior, I.M., Fernandes, R.A., 1998. Ensialic tectonic setting of the Archaean Rio das Velhas greenstone belt:Nd and Pb isotopic evidence from the Bonfim metamorphic complex, Quadrilátero Ferrífero, Brazil. Rev. Bras. Geoc. 28(2), 189-200 10.25249/0375-7536.1998189200 (in Portuguese with English abstract).
    [29]
    Carvalho, S.D., Soares, P., Antonio, M., Zanardo, A., Oliveira, M., 1993. Geologia da Seqüência Vulcano-Sedimentar de Alpinópolis, MG. Rev. Bras. Geoc. 23(1), 38-51 dx.doi.org/10.25249/0375-7536.19932313851(in Portuguese with English abstract).
    [30]
    Cavalcante, J., Cunha, H.D.S., Chieregatti, L.A., Kaefer, L.Q., ROCHA, J.D., Daitx, E.C., Ramalho, R., 1979. Projeto Sapucaí, estado de São Paulo, Rio de Janeiro e Minas Gerais, Relatório Final de Geologia. DNPM/CPRM, Brasília, p.229 (in Portuguese).
    [31]
    Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., and Nebel, O., 2018 Geological Archive of the Onset of Plate Tectonics. Phil. Trans. R. Soc. Lond. 376. doi.org/10.1098/rsta.2017.0405
    [32]
    Caxito, F.A., Hagemann, S., Dias, T.G., Barrote, V., Dantas, E.L., de Oliveira Chaves, A., Campos, F. C., 2020. A magmatic barcode for the São Francisco Craton:Contextual in-situ SHRIMP U-Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodínia reconstructions. Lithos 105708. doi.org/10.1016/j.lithos.2020.105708
    [33]
    Chaves, A.O., 2015. Correlações entre suítes magmáticas alcalinas orosirianas póscolisionais da Bahia e Minas Gerais:fragmentos de uma província alcalina? Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 10, 179-197 (in Portuguese with English abstract)
    [34]
    Choudhuri, A., Crosta, A.P., Schrank, A., Szabó, G.A.J., Iver, A.A., 1992. The Quilombo granite in the Archean Morro do Ferro greenstone belt, SW Minas Gerais and the regional character of the trans-amazonian event. REM, Rev. Esc. de Minas 45,152-154 (in Portuguese with English abstract)
    [35]
    Cioffi C.R., Campos Neto M.C., Möeller A., Rocha B.C. 2016a. Paleoproterozoic continental crust generation events at 2.15 and 2.08 Ga in the basement of the southern Brasília Orogen, SE Brazil. Precambrian Res. 275, 176-196. doi.org/10.1016/j.precamres.2016.01.007
    [36]
    Cioffi C.R., Campos Neto M.C., Möller A., Rocha B.C. 2016b. Tectonic significance of the Meso- to Neoarchean complexes in the basement of the southern Brasília Orogen. Precambrian Res. 287, 91-107. doi.org/10.1016/j.precamres.2016.10.009
    [37]
    Coelho, M.B., Trouw, R.A.J., Ganade, C.E., Vinagre, R., Mendes, J. C., Sato, K., 2017. Constraining timing and PT conditions of continental collision and late overprinting in the Southern Brasília Orogen, SE-Brazil:U-Pb zircon ages and geothermobarometry of the Andrelândia Nappe System. Precambrian Res. 292, 194-215. doi.org/10.1016/j.jsames.2011.02.013
    [38]
    Compston, W., Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res.:Solid Earth 89(S02), B525-B534. doi.org/10.1029/JB089iS02p0B525
    [39]
    Condie, K.C., 2018. A Planet in Transition:The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geosci. Front. 9 (1) 51-60. doi.org/10.1016/j.gsf.2016.09.001
    [40]
    Cumming, G.L., Richards, J.R., 1975. Ore lead isotope ratios in a continuously changing Earth. Earth Planet. Sci. Lett. 28(2) 155-171. doi.org/10.1016/0012-821X(75)90223-X
    [41]
    D'Agrella-Filho M.S., Cordani U.G., 2017. The Paleomagnetic Record of the São Francisco-Congo Craton. In:Heilbron M., Cordani U., Alkmim F. (Eds.), São Francisco Craton, Eastern Brazil. Springer, Cham, https://doi.org/10.1007/978-3-319-01715-0_16.
    [42]
    Dhuime, B., Wuestefeld, A. Hawkesworth, C., 2015. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552-555. doi.org/10.1038/ngeo2466
    [43]
    Dilek, Y., Polat, A., 2008. Suprasubduction Zone Ophiolites and Archean Tectonics. Geology 36(5), 431-432. doi.org/10.1130/Focus052008.1
    [44]
    Dopico, C.I.M., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161. doi.org/10.1016/j.precamres.2017.01.026
    [45]
    Droop, G.T.R., 1987. A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag. 51(361), 431-435. doi.org/10.1180/minmag.1987.051.361.10
    [46]
    Dziggel, A., 2002 The Petrogenesis of Lower Onverwacht Group Clastic Metasediments and Related Metavolcanic Rocks in the Southern Part of the Barberton Mountain Land, South Africa. University of the Witwatersrand, Johannesburg, 460 pp
    [47]
    Faria Jr., I.F., 2015. Prospecção mineral de alvos potenciais à ocorrência de enriquecimento supergênico de níquel no Greenstone Belt do Morro do Ferro. M.S. Thesis. Universidade Estadual Paulista, 137 pp. repositorio.unesp.br/handle/11449/134018 (in Portuguese with English abstract).
    [48]
    Farina, F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium- and high-K granitoids:Clues from the Southern São Francisco Craton, Brazil. Precambrian Res. 266, 375-394. doi.org/10.1016/j.precamres.2015.05.038
    [49]
    Farina, F., Albert, C., Dopico, C.M., Gil, C.A., Moreira, H., Hippertt, J.P., Lana, C., 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero, Brasil:Current models and open questions. J South Am. Earth Sci. 68, 4-21. doi.org/10.1016/j.jsames.2015.10.015
    [50]
    Fayad, D.A.C., 2013. Cromititos dos Complexos Campos Gerais e Petúnia, Faixa Brasília Meridional na região entre Alpinópolis e Nova Resende, MG:Geologia, petrografia, química mineral e ambientação tectono-magmática. M.S. Thesis. Universidade de São Paulo. 99 pp, https://doi.org/10.11606/D.44.2013.tde-22012015-143200 (in Portuguese with English abstract).
    [51]
    Feola, J.L., 2004. Mineralizações Auríferas hospedadas na faixa metavulcano-sedimentar Jacuí-Bom Jesus da Penha-sudoeste de Minas Gerais. PhD Thesis. Universidade Estadual Paulista-UNESP, 203 pp. repositorio.unesp.br/handle/11449/92913 (in Portuguese with English abstract).
    [52]
    Fernandes, N.H.; Carvalho, S.G., Zanardo, A.; Fernandes, T.M.G., 2003. Grau metamórfico das formações ferríferas do Greenstone Belt Morro do Ferro:Abordagem utilizando texturas de exsolução em anfibólios. Geoc. Unesp 22(1), 53-63 (in Portuguese with English abstract)
    [53]
    Filgueiras, A.M.D.C., 2000. Estudos litoestruturais do Greenstone Belt Morro do Ferro entre a faixa Mumbuca e a faixa Morro do Ferro, Minas Gerais, e sua implicação para mineralizações sulfetadas. M.S. thesis, Universidade Estadual de Campinas-UNICAMP, 85 pp. (in Portuguese with English abstract).
    [54]
    Fontainha, M. V., Trouw, R. A., Dantas, E. L., Polo, H. J., Furtado, P. C., Marimon, R. S., Peternel, R., 2020. Provenance and tectonic evolution of the Andrelândia Group in the region between the Socorro and Guaxupé nappes, Southern Brasília and Ribeira orogens, Brazil. J South Am. Earth Sci. 103060. doi.org/10.1016/j.jsames.2020.103060
    [55]
    Frugis G.L., Campos Neto M.C., Lima R.B., 2018. Eastern Paranapanema and southern São Francisco orogenic margins:Records of enduring Neoproterozoic oceanic convergence and collision in southern Brasília Orogen. Precambrian Res. 308, 35-57. doi.org/10.1016/j.precamres.2018.02.005
    [56]
    Furnes, H., Robins, B., de Wit, M.J., 2012. Geochemistry and petrology of lavas in the Upper Onverwacht Suite, Barberton Mountain Land. S. Afr. J. Geol. 115(2), 171-210. doi.org/10.2113/gssajg.115.2.171
    [57]
    Furnes, H., de Wit, M., Robins, B., 2013. A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Overwatch Suite, Barberton Greenstone Belt, South Africa. Gondwana Res. 23(2), 403-428. dx.doi.org/10.1016/j.gr.2012.05.007
    [58]
    Gengo, R.M., Moraes, R., Szabó, G.A.J., 2019. Proveniência sedimentar da unidade Serra do Ibituruna na borda Sul do Cráton do São Francisco:Registros de deposição paleoproterozoica. 4° Simpósio sobre o Cráton do São Francisco/28° Simpósio de Geologia do Nordeste. SBG. Aracaju-CE Available in:sbgeo.org.br/assets/admin/imgCk/files/Anais/Anais_28o_Simposio_de_Geologia_do_Nordeste-ISBN.pdf (in Portuguese).
    [59]
    Gengo, R.M., Moraes, R., Szabó, G.A.J., 2018. Complexo Petúnia:Uma conexão entre os Grupos Araxá-Canastra e Andrelândia-Carrancas?. 49° Congresso Brasileiro de Geologia. SBG-RJ. Rio de Janeiro (in Portuguese).
    [60]
    Godard, M., Jousselin, D., Bodinier, J., 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre:A study of the mantle section in the Oman ophiolite. Earth Planet. Sci. Lett. 180, 133-148. doi.org/10.1016/S0012-821X(00)00149-7
    [61]
    Godard, M., Lagabrielle, Y., Alard, O., Harvey, J., 2008. Geochemistry of the Highly Depleted Peridotites Drilled at ODP Sites 1272 and 1274, Fifteen-twenty fracture zone, Mid-Atlantic ridge:Implications for mantle dynamics beneath a slow spreading ridge'. Earth Planet Sci. Lett. 267, 410-425. doi.org/10.1016/j.epsl.2007.11.058
    [62]
    Goulart, L.E.A., Carneiro M.A,2013. Evolution of arc magmatism in the Carmópolis de Minas Layered Suite, Minas Gerais, Brazil:Sm-Nd and Rb-Sr isotope geochemistry. Revista da Escola Minas, Ouro Preto, 66(40), 447-454. doi.org/10.1590/S0370-44672013000400007 (in Portuguese with English abstract)
    [63]
    Goulart, L.E.A., Carneiro, M.A, Endo, I, Suita, M.T.F,2013. New evidence of Neoarchean crustal growth in southern São Francisco Craton:the Carmópolis de Minas Layered Suite, Minas Gerais, Brazil. Braz. J. Geol. 43(3), 445-459. doi.org/10.5327/Z2317-48892013000300003
    [64]
    Guice, G.L., 2019. Origin and Geodynamic Significance of Ultramafic-Mafic Complexes in the North Atlantic and Kaapvaal Cratons. PhD thesis, Cardiff University. Available in orca.cf.ac.uk/123339.
    [65]
    Guice, G.L., McDonald, I., Hughes, H.S.R., Anhaeusser, C.R., 2019. An Evaluation of Element Mobility in the Modderfontein Ultramafic Complex, Johannesburg:Origin as an Archaean Ophiolite Fragment or Greenstone Belt Remnant? Lithos 332-333, 99-119. doi.org/10.1016/j.lithos.2019.02.013
    [66]
    Guice, G.L., McDonald, I., Hughes, H.S.R., Schlatter, D.M., Goodenough, K.M., Macdonald, J.M., Faithfull, J.W., 2018. Assessing the Validity of Negative High Field Strength-Element Anomalies as a Proxy for Archaean Subduction:Evidence from the Ben Strome Complex, NW Scott. Geosc. 8(9), 338. doi.org/10.3390/geosciences8090338
    [67]
    Hamilton, W.B., 2011, Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated:Lithos, 123, 1-20. doi.org/10.1016/j.lithos.2010.12.007
    [68]
    Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds), 2017. The São Francisco craton and its margins. In:São Francisco Craton, Eastern Brazil. Springer, Cham. 10.1007/978-3-319-01715-0.
    [69]
    Hopkins, M., Harrison, T.M., Manning, C.E., 2008. Low Heat Flow Inferred from >4 Gyr Zircons Suggests Hadean Plate Boundary Interactions. Nature 456, 493-496. doi.org/10.1038/nature07465
    [70]
    Janasi, V.A., Vlach, S.R.F., Campos Neto, M.C., Ulbrich H.H.G.J., 2009. Associated A-Type subalkaline and high-K calc-alkaline granites in the Itu Granite Province, Southeastern Brazil:Petrological and tectonic significance. Canad Mineral. 47, 1505-1526. doi.org/10.3749/canmin.47.6.1505
    [71]
    Johnson, T.E., Brown, M., Goodenough, K.M., Clark, C., Kinny, P.D., White, R.W., 2016. Subduction or Sagduction? Ambiguity in Constraining the Origin of Ultramafic-Mafic Bodies in the Archean Crust of NW Scotland. Precambrian Res. 283, 89-105. dx.doi.org/10.1016/j.precamres.2016.07.013
    [72]
    Johnson, T.E., Kirkland, C.L., Gardiner, N.J., Brown, M., Smithies, R.H., Santosh, M., 2019. Secular Change in TTG Compositions:Implications for the Evolution of Archaean Geodynamics. Earth Planet Sci. Lett. 505, 65-75. linkinghub.elsevier.com/retrieve/pii/S0012821X18306186
    [73]
    Kamber, B.S., 2015. The Evolving Nature of Terrestrial Crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48-82. dx.doi.org/10.1016/j.precamres.2014.12.007
    [74]
    Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. J. Petrol. 42(4), 655-671. doi.org/10.1093/petrology/42.4.655
    [75]
    Klemme, S., Prowatke, S., Hametner, K., Gunther, D., 2005. Partitioning of trace elements between rutile and silicate melts:Implications for subduction zones. Geochim. Cosmochim. Acta 69(9), 2361-2371. doi.org/10.1016/j.gca.2004.11.015
    [76]
    Kröner, A., Hegner, E., Wendt, J.I., Byerly, G.R., 1996. The oldest part of the Barberton granitoid-greenstone terrain, South Africa:Evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Res. 78 (1-3), 105-124. doi.org/10.1016/0301-9268(95)00072-0
    [77]
    Lahaye, Y., Arndt, N., Byerly, G., Chauvel, C., Fourcade, S., Gruau, G., 1995. The influence of alteration on the trace-element and Nd isotopic compositions of komatiites. Chem Geol. 126, 43-64. ttps://doi.org/10.1016/0009-2541(95)00102-1
    [78]
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini, H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 231, 157-173. doi.org/10.1016/j.precamres.2013.03.008
    [79]
    Laurent, O., Martin, H., Moyen, J. F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids:Evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208-235. doi.org/10.1016/j.lithos.2014.06.012
    [80]
    Lima, F.G., 2017. Morro do Níquel:fragmento de manto exumado na Faixa Brasília Meridional. PhD thesis. Universidade Estadual Paulista-UNESP, 127 p. Available from:repositorio.unesp.br/handle/11449/151669?locale-attribute=es (in Portuguese with English abstract).
    [81]
    Lima, F.G., Zanardo, A., Godoy, L.H., Navarro, G.R.B., 2016. Petrografia e geoquímica das rochas metamáficas e metaultramáficas da região de Jacuí-Bom Jesus da Penha, MG. Geociências, 35(2) 302-321. Available from:www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/9027/8292 (in Portuguese with English abstract).
    [82]
    Lima, F.G., Zanardo, A., Navarro, G.R.B., 2015. Geoquímica das Rochas metamáficas e metaultramáficas da Sequência Greenstone Belt Morro do Ferro na região de Fortaleza de Minas-MG. Geochimica Brasiliensis, 29(1), 1-14. dx.doi.org/10.21715/gb.v29i1.403 (In Portuguese with English abstract)
    [83]
    Ludwig, K.R., 2009. SQUID 2:A User's Manual. Berkeley Geochronology Center, Special Pub. 5, 110 p
    [84]
    Ludwig, K.R., 2001. Isoplot/Ex version 2.49:A geochronology toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Pub. 55
    [85]
    Ludwig, K.R., 1999. Using Isoplot/Ex version 2.01:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Pub., 1, 47
    [86]
    Maier, W.D., Peltonen, P., Halkoaho, T., Hanski, E., 2013. Geochemistry of Komatiites from the Tipasjärvi, Kuhmo, Suomussalmi, Ilomantsi and Tulppio Greenstone Belts, Finland:Implications for Tectonic Setting and Ni Sulphide Prospectivit'. Precambrian Res. 228, 63-84. doi.org/10.1016/j.precamres.2012.12.004
    [87]
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet Sci. Lett. 141, 259-276. doi.org/10.1016/0012-821X(96)00054-4
    [88]
    Machado, N., Carneiro, M.A., 1992. U-Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can. J. Earth Sci. 29, 2341-2346. doi.org/10.1139/e92-182
    [89]
    Machado, N., Noce, C.M., Ladeira, E.A., Oliveira, O.B., 1992. U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco craton, Brazil. Geol. Soc. Am. Bull. 104(9) 1221-1227. doi.org/10.1130/0016-7606
    [90]
    Magalhaes, J.R., Pedrosa-Soares, A., Dussin, I., Müntener, O., Pinheiro, M.A.P., Silva, L.C., Baumgartner, L., 2018. First Lu-Hf, δ18O and trace elements in zircon signatures from the Statherian Espinhaço anorogenic province, Eastern Brazil:geotectonic implications of a silicic large igneous province. Braz. J. Geol. 48(4) 735-759. doi.org/10.1590/2317-4889201820180046
    [91]
    Marimon, R.S., Trouw, R.A., Dantas, E.L., Ribeiro, A., Santos, P., Kuster, K., Vinagre, R., 2020a. Provenance of passive-margin and syn-collisional units:Implications for the geodynamic evolution of the Southern Brasília Orogen, West Gondwana. Sediment Geol. 105823. doi.org/10.1016/j.sedgeo.2020.105823
    [92]
    Marimon, R.S., Trouw, R.A., Dantas, E.L., 2020b. Significance of age periodicity in the continental crust record:The São Francisco Craton and adjacent Neoproterozoic orogens as a case study. Gondwana Res. 86, 144-163. doi.org/10.1016/j.gr.2020.05.010
    [93]
    Mantovani, M.S.M., Brito Neves, B.B., 2005. The Paranapanema Lithospheric Block:Its Importance for Proterozoic, Rodinia, Gondwana Supercontinent Theories. Gondwana Res. 8(3), 303-315. doi.org/10.1016/S1342-937X(05)71137-0
    [94]
    McDonough, W.F., Sun, S. S., 1995. The composition of the Earth. Chem Geol. 120(3-4), 223-253. doi.org/10.1016/0009-2541(94)00140-4
    [95]
    Morales, N., Zanardo, A., Simões, L.S.A., Godoy, A. M., 1991. A zona de cisalhamento Campo do Meio na região entre Fortaleza de Minas e Alpinópolis, Sul de Minas Gerais. SNET-Simpósio Nacional de Estudos Tectônicos. Anais 3, 34-6 (in Portuguese)
    [96]
    Moreno, J.A., Baldim, M.R., Semprich, J., Oliveira, E.P., Verma, S.K., Teixeira, W., 2017. Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern São Francisco Craton, Brazil. Precambrian Res. 294, 322-343. doi.org/10.1016/j.precamres.2017.04.011
    [97]
    Motta R.G., Moraes R. 2017. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes:a case study of the Southern Brasília Orogen, Brazil. Int J Earth Sci. 106, 2407-2427. doi.org/10.1007/s00531-016-1436-7
    [98]
    Moyen, J., Laurent, O., 2018, Archaean tectonic systems:A view from igneous rocks. Lithos 302-303, 99-125. https://doi.org/10.1016/j.lithos.2017.11.038
    [99]
    Noce, C.M., Machado, N., Teixeira, W., 1997. Geoquímica dos gnaisses TTGs e granitóides neoarqueanos do complexo Belo Horizonte, Quadrilátero Ferrífero, Minas Gerais. Braz. J. Geol. 28(1), 95-102. doi.org/10.25249/0375-7536.19972532
    [100]
    Oliveira, E.P., McNaughton, N.J., Zincone, S.A., Talavera, C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga Gneisses of the Mairi Gneiss Complex. Terra Nova, 32(4), 281-289. doi.org/10.1111/ter.12460
    [101]
    Oliveira, M.A.F., Negri, F.D.A, 2011. O Grupo Araxá e seu embasamento na região de Pratápolis, Mg:Novos dados geoquímicos e geocronológicos. 12° Simpósio de Geologia do Sudeste. Nova Friburgo, Rio de Janeiro. SBG. Anais, p. 57. Available from:www.sbgeo.org.br/home/pages/44 (in Portuguese).
    [102]
    Oliveira, M.A.F., Negri, F.D.A., Zanardo, A., Morales, N., 2018. Archean and paleoproterozoic crust generation events, Amparo complex and Serra Negra orthogneiss in southern Brasília Orogen, SE Brazil. J. South Am. Earth Sci. 90, 137-154. dx.doi.org/10.1016/j.jsames.2018.11.029
    [103]
    Paulick, H., Bach, W., Godard, M., Hoog, J.C.M. De, Suhr, G., Harvey, J., 2006. Geochemistry of Abyssal Peridotites, Mid-Atlantic Ridge, 15°20N, ODP Leg 209:Implications for Fluid/Rock Interaction in Slow Spreading Environments. Chem. Geol. 234, 179-210. dx.doi.org/10.1016/j.chemgeo.2006.04.011
    [104]
    Pearce, J.A., Reagan, M.K., 2019. Identification, Classification and Interpretation of Boninites from Anthropocene to Eoarchean Using Si-Mg-Ti Systematics. Geosphere 15(4), 1008-1037. doi.org/10.1130/GES01661.1
    [105]
    Pimentel, M.M., Ferreira Filho, C.F., 2002. Sm-Nd age of komatiites from the Morro do Ferro Greenstone Belt, Fortaleza de Minas, Brazil; Idade Sm-Nd de komatiitos dos Greenstone Belt do Morro do Ferro, Fortaleza de Minas, Brasil. Rev. Bras. Geoc. 32(1), 147-148. doi.org/10.25249/0375-7536.2002321147148
    [106]
    Pinese, J.P.P., Teixeira, W., Piccirillo, E.M., Quéméneur, J.J.G., Bellieni, G., 1995. The Precambrian Lavras mafic dykes, southern São Francisco Craton, Brazil:preliminary geochemical and geochronological results. In:Baer, G., Heimann, A. (Eds.), Physics and Chemistry of Dykes. Crc Press, pp. 205-219
    [107]
    Pinheiro, M.A.P., Suita, M.T.F., Lesnov, F.P., Tedeschi, M., Silva, L.C., Medvedev, N.S., Sergeev, S.A., 2019. Timing and petrogenesis of metamafic-ultramafic rocks in the Southern Brasília orogen:Insights for a Rhyacian multi-system suprasubduction zone in the São Francisco paleocontinent, SE-Brazil. Precambrian Res. 321, 328-348. doi.org/10.1016/j.precamres.2018.12.006
    [108]
    Poujol, M., Robb, L.J., Anhaeusser, C.R., Gericke, B., 2003. A Review of the Geochronological Constraints on the Evolution of the Kaapvaal Craton, South Africa. Precambrian Res. 127(1-3), 181-213. doi.org/10.1016/S0301-9268(03)00187-6
    [109]
    Puchtel, I.S., Blichert-Toft, J., Touboul, M., Walker, R.J., Byerly, G.R., Nisbet, E.G., Anhaeusser, C.R., 2013. Insights into Early Earth from Barberton Komatiites:Evidence from Lithophile Isotope and Trace Element Systematics. Geochim. Cosmochim. Acta 108, 63-90. dx.doi.org/10.1016/j.gca.2013.01.016
    [110]
    Puchtel, I.S., Walker, R.J., Touboul, M., Nisbet, E.G., Byerly, G.R., 2014. Insights into Early Earth from the Pt-Re-Os Isotope and Highly Siderophile Element Abundance Systematics of Barberton Komatiites. Geochim. Cosmochim. Acta 125, 394-413. dx.doi.org/10.1016/j.gca.2013.10.013
    [111]
    Putnis, A., Austrheim, H., 2010. Fluid-Induced Processes:Metasomatism and Metamorphism. Geofluids 10,1-2, 254-269. doi.org/10.1111/j.1468-8123.2010.00285.x
    [112]
    Rajamani, V., Shivkumar, K., Hanson, G.N., and SHIREY, S.B., 1985. Geochemistry and Petrogenesis of Amphibolites, Kolar Schist Belt, South India:Evidence for Komatiitic Magma Derived by Low Percentages of Melting of the Mantle. J. Petrol. 26(1), 92-123. doi.org/10.1093/petrology/26.1.92
    [113]
    Reno B.L., Piccoli P.M., Brown M., Trouw R.A.J. 2011. In situ monazite, U-Th-Pb ages from the Southern Brasília Belt, Brazil:constraints on the high-temperature retrograde evolution of HP granulites. J. Metamorph. Geol. 30:81-112. doi.org/10.1111/j.1525-1314.2011.00957.x
    [114]
    Robin-Popieul, C.C.M., Arndt, N.T., Chauvel, C., Byerly, G.R., Sobolev, A. V., Wilson, A., 2012. A New Model for Barberton Komatiites:Deep Critical Melting with High Melt Retention. J. Petrol. 53(11), 2191-2229. doi.org/10.1093/petrology/egs042
    [115]
    Rocha B.C., Moraes R., Möller A., Cioffi C.R., Jercinovic M.J. 2017. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil:Insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology. Lithos 277, 337-355. doi.org/10.1016/j.lithos.2016.05.020
    [116]
    Rocha B.C., Moraes R., Möller A., Cioffi C.R. 2018. Magmatic inheritance vs. UHT metamorphism:zircon petrochronology of granulites and petrogenesis of charnockitic leucosomes of the Socorro-Guaxupé Nappe, SE Brazil. Lithos 314-315, 16-39. doi.org/10.1016/j.lithos.2018.05.014
    [117]
    Roig, H.L., 1993. Caracterização da" Zona de Sutura" Jacuí-Conceição da Aparecida, MG-limite norte do Cinturão Alto Rio Grande:implicações geotectonicas e metalogeneticas. M.S. thesis, Universidade Estadual de Campinas-UNICAMP, 161 pp. repositorio.unicamp.br/jspui/handle/REPOSIP/287447 (in Portuguese with English abstract).
    [118]
    Rollinson, H., 2007. Recognizing Early Archaean Mantle:A Reappraisal. Contrib. Mineral. Petrol. 154, 241-252. doi.org/10.1007/s00410-007-0191-y
    [119]
    De Ronde, C.E.J., de Wit, M.J., 1994. Tectonic History of the Barberton Greenstone Belt, South Africa:490 Million Years of Archaean Evolution. Tectonics 13(13), 983-1005. doi.org/10.1029/94TC00353
    [120]
    Sato, K., Tassinari, C.C.G., Basei, M.A.S., Siga-Jr, O., Onoe, A.T., Souza, M., 2014. Sensitive high-resolution ion microprobe, SHRIMP IIe/MC of the Institute of Geosciences of the University of São Paulo, Brazil:analytical method and first results. Geologia USP, Série Científica, 14,3, 3-18 doi.org/10.5327/Z1519-874X201400030001(In Portuguese with English abstract)
    [121]
    Seer, H.J., 1999. Evolução tectônica dos Grupos Araxá, Ibiá e Canastra na Sinforma de Araxá, PhD thesis, Universidade de Brasília. mw.eco.br/ig/posg/dout/tese028/Capa.htm (in Portuguese with English abstract).
    [122]
    Silva, A.J.C.A., Simões, L.S.A., DuFrane, S.A., Alkmim, L.A.S., Cerri, R.I., 2020. U-Pb ages of detrital zircon grains for the Canastra Group and Passos Nappe units and U-Pb and Lu-Hf isotope analyses from orthogneisses:Provenance and tectonic implications, southern Brasília Belt, Brazil. Precambrian Res. 105771. doi.org/10.1016/j.precamres.2020.105771
    [123]
    Silva, L.C., Pedrosa-Soares, A.C., Armstrong, R., Pinto, C.P., Magalhães, J.T.R., Pinheiro, M.A P., Santos, G.G., 2016. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement:The Porteirinha domain, northern Araçuaí orogen, Brazil. J. South Am. Earth Sci. 68, 50-67. doi.org/10.1016/j.jsames.2015.12.002
    [124]
    Smithies, R.H., Ivanic, T.J., Lowrey, J.R., Morris, P.A., Barnes, S.J., Wyche, S., Lu, Y., 2018, Two distinct origins for Archean greenstone belts. Earth Planet Sci. Lett. 487, 106-116
    [125]
    Soares, P.C., Fiori, A.P., Carvalho, S.G., 1990. Tectônica colisional oblíqüa entre o Bloco Paraná ea margem sul do Cráton do São Francisco, no Maciço de Guaxupé. In:36° Congresso Brasiliero de Geologia Natal, Anais 6, 2723-2734. Available from:www.sbgeo.org.br/home/pages/44 (in Portuguese with English abstract).
    [126]
    Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., Whattam, S., 2012. To Understand Subduction Initiation, Study Forearc Crust:To Understand Forearc Crust, Study Ophiolites. Lithosphere 4(6) 469-483. doi.org/10.1130/L183.1
    [127]
    Stern, R.J., 2020, The Mesoproterozoic Single-Lid Tectonic Episode:Prelude to Modern Plate Tectonics. GSA Today 30, 4-10, https://doi.org/doi.org/10.1130/GSATG480A.1
    [128]
    Sylvester, P.J., 1994. Archean granite plutons. In:Condie, K.C. (Ed.), Developments in Precambrian Geology. Elsevier, Volume 11, 261-314. 10.1016/S0166-2635(08)70225-1.
    [129]
    Szilas, K., Næraa, T., Scherstén, A., Stendal, H., Frei, R., van Hinsberg, V.J., Kokfelt, T.F., Rosing, M.T., Hinsberg, V.J. Van, Kokfelt, T.F., Rosing, M.T., 2012. Origin of Mesoarchaean Arc-Related Rocks with Boninite/Komatiite Affinities from Southern West Greenland. Lithos 144-145, 24-39. dx.doi.org/10.1016/j.lithos.2012.03.023
    [130]
    Szabó, G.A.J., 1996. Petrologia da Suite Metaultramafica da Sequência Vulcano-Sedimentar Morro do Ferro na Região de Sul a Oeste de Alpinopolis, MG-Domínio Norte do Complexo Campos Gerais. PhD thesis, Universidade de São Paulo-USP, https://doi.org/10.11606/T.44.1996.tde-20032013-161120 (in Portuguese with English abstract).
    [131]
    Tedeschi M., Lanari P., Rubatto D., Pedrosa-Soares A., Hermann J., Dussin I., Pinheiro M.A.P., Bouvier A.S., Baugmgartner L. 2017. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks:Subduction versus collision in the Southern Brasília orogen, SE Brazil. Lithos, 294-295, 283-303. doi.org/10.1016/j.lithos.2017.09.025
    [132]
    Tedeschi M., Pedrosa-Soares A., Dussin I., Lanari P., Novo T., Pinheiro M.A.P., Lana C., Peters D. 2018. Protacted zircon geochronological record of UHT granet-free granulites in the Southern Brasília Orogen, SE Brazil:Petrochronological constraints on magmatism and metamorphism. Precambrian Res. 316:103-126. doi.org/10.1016/j.precamres.2018.07.023
    [133]
    Teixeira, N.A., 1978. Geologia, petrologia e prospecção geoquímica da Seqüência Vulcano-Sedimentar Morro do Ferro, Fortaleza de Minas-MG. M.S. thesis, Universidade de Brasilia-UNB, 202 pp. (in Portuguese with English abstract).
    [134]
    Teixeira, N.A., Gaspar, J.C., Brenner, T.L., Cheney, J.T., Marchetto, C.M., 1987. Geologia e implicações geotectônicas do Greenstone Belt Morro do Ferro, Fortaleza de Minas, MG. Rev. Bras. Geoc. 17(3), 209-220. doi.org/10.25249/0375-7536.1987209220
    [135]
    Teixeira, W., Oliveira, E. P., Marques, L. S., 2017. Nature and evolution of the Archean crust of the São Francisco Craton. In:São Francisco Craton, Eastern Brazil. Springer, Cham, pp. 29-56. https://doi.org/10.1007/978-3-319-01715-0_3
    [136]
    Teixeira, W., Ávila, C.A., Dussin, I.A., Neto, A.C., Bongiolo, E.M., Santos, J.O., Barbosa, N.S., 2015. A juvenile accretion episode:2.35-2.32 Ga in the Mineiro belt and its role to the Minas accretionary orogeny:Zircon U-Pb-Hf and geochemical evidences. Precambrian Res. 256, 148-169. doi.org/10.1016/j.precamres.2014.11.009
    [137]
    Teixeira, W., Tassinari, C.C.G., Cordani, U.G., Kawashita, K., 1989. A review of the geochronology of the Amazonian Craton:tectonic implications. Precambrian Res. 42(3-4), 213-227. doi.org/10.1016/0301-9268(89)90012-0
    [138]
    Tomlinson, K.Y., Condie, K.C., 2001. Archean Mantle Plumes:Evidence from Greenstone Belt Geochemistry'. Geol. Soc. Am., Special Paper 352, 341-357. doi.org/10.1130/0-8137-2352-3.341
    [139]
    Toledo, B.B., Janasi, V.A., Silva, L.G.R., 2018. SHRIMP U-Pb geochronology of the Socorro Batholith and implications for the Neoproterozoic evolution in SE Brazil. Braz. J. Geol. 48, 761-782. doi.org/10.1590/2317-4889201820180040
    [140]
    Turbay, C.V.G., 2010. Caracterização petrológica e geocronológica do Complexo Campos Gerais, Arqueano, Minas Gerais, Brasil. PhD thesis, Universidade do Estado do Rio de Janeiro, 176 pp.. Available from:www.fgel.uerj.br/site/trabalhoacademico/caracterizacao-petrologica-e-geocronologica-do-complexo-campos-gerais-arqueano-paleoproterozoico-minas-gerais/(in Portuguese with English abstract).
    [141]
    Turbay, C.V.G., Valeriano, C.M., 2012. Litogeoquímica do Complexo Campos Gerais e granitoides intrusivos, Arqueano/Paleoproterozoico, Brasil. Rev. Bras. Geoc. 42(4), 663-689 doi.org/10.25249/0375-7536.2012424663689 (in Portuguese with English abstract)
    [142]
    Turbay, C.V.G., Valeriano, C.M., Rossi, A., da Rocha, V.G.M., 2008. Geologia do Complexo Campos Gerais ao sul de Alpinópolis, sudoeste de Minas Gerais. Geonomos 16(2), 79-90. doi.org/10.18285/geonomos.v16i2.86 (in Portuguese with English abstract)
    [143]
    Valeriano, C.M., Almeida, J.C., Trouw, R., Paciullo, F., Simoes, L., Szabo, G.A., Turbay, C., 2007. Mapa Geológico da Folha Alpinópolis-Escala 1:100.000. Serviço Geológico do Brasil (CPRM), Brasília (in Portuguese).
    [144]
    Valeriano, C.M., Machado, N, Simonetti, A, Valadares, C.S, Seer, H.J., Simões, L.S.A., 2004. U-Pb geochronology of the southern Brasília belt, SE-Brazil:sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Res. 130, 27-55. dx.doi.org/10.1016/j.precamres.2003.10.014
    [145]
    Valeriano, C.M., Simões, L.S.A., Teixeira, W., Heilbron, M. 2000. Southern Brasilia belt (SE Brazil):tectonic discontinuities, K-Ar data and evolution during the Neoproterozoic Brasiliano orogeny. Rev. Bras. Geoc. 30(1), 195-199. doi.org/30:195-199. 10.25249/0375-7536.2000301195199
    [146]
    Vlach, S.R.F., Janasi, V.A., Vasconcellos, A.C.B. 1990. The Itú belt:associated calc-alkalic and aluminous A-type Brasiliano granitoids in the States of São Paulo and Paraná, southern Brazil. In:36th Cong. Bras. Geol. Natal, Anais, p. 1700-1711. Available from:www.sbgeo.org.br/home/pages/44 (in Portuguese).
    [147]
    Vinagre, R., Trouw, R.A.J., Marimon, R.S., Nepomuceno, F., Mendes, J.C., Dantas, E., 2020. São Bento do Sapucaí Shear Zone:Constraining age and PT conditions of a collisional Neoproterozoic oblique shear zone, Ribeira Orogen, Brazil. J. South Am. Earth. Sci. 98, 102418. doi.org/10.1016/j.jsames.2019.102418
    [148]
    Vinagre, R., Trouw, R.A., Mendes, J.C., Duffles, P., Peternel, R., Matos, G., 2014. New evidence of a magmatic arc in the southern Brasília belt, Brazil:The Serra da Água Limpa batholith, Socorro-Guaxupé Nappe. J. South Am. Earth. Sci. 54, 120-139. doi.org/10.1016/j.jsames.2014.05.002
    [149]
    Wernick, E., 1981. The Archaean of Brazil. Earth Sci. Rev. 17,1-2, 31-48. doi.org/10.1016/0012-8252(81)90004-0
    [150]
    Westin, A., Neto, M.C.C., Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Delavault, H., 2016. A paleoproterozoic intra-arc basin associated with a juvenile source in the Southern Brasilia Orogen:Application of U-Pb and Hf-Nd isotopic analyses to provenance studies of complex areas. Precambrian Res. 276, 178-193. doi.org/10.1016/j.precamres.2016.02.004
    [151]
    Whattam, S.A., Stern, R.J., 2011. The Subduction Initiation Rule:A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation. Contrib. Mineral Petrol. 162 (5), 1031-1045. doi.org/10.1007/s00410-011-0638-z
    [152]
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 7, 1-35. doi.org/10.5382/Rev.07.01
    [153]
    Zanardo, A., Morales, N., Oliveira, M.A.F., 2007. Tectono-lithologic associations of the Alterosa paleo suture zone-Southeastern Brazil. Rev. Geoc.-UNG, 5(1), 103-117. Available from:revistas.ung.br/index.php/geociencias/article/view/99 (in Portuguese with English abstract).
    [154]
    Zanardo, A., Del Lama, E.A., Morales, N., Oliveira, M.A.F., 1996. Geologia da porção limítrofe entre os blocos São Paulo e Brasília. Geociências 15(1), 143-168 (in Portuguese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return