Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Camille Rossignol, Paul Yves Jean Antonio, Francesco Narduzzi, Eric Siciliano Rego, Lívia Teixeira, Romário Almeida de Souza, Janaína N. Ávila, Marco A.L. Silva, Cristiano Lana, Ricardo I.F. Trindade, Pascal Philippot. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses[J]. Geoscience Frontiers, 2022, 13(5): 101202. doi: 10.1016/j.gsf.2021.101202
Citation: Camille Rossignol, Paul Yves Jean Antonio, Francesco Narduzzi, Eric Siciliano Rego, Lívia Teixeira, Romário Almeida de Souza, Janaína N. Ávila, Marco A.L. Silva, Cristiano Lana, Ricardo I.F. Trindade, Pascal Philippot. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses[J]. Geoscience Frontiers, 2022, 13(5): 101202. doi: 10.1016/j.gsf.2021.101202

Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses

doi: 10.1016/j.gsf.2021.101202
Funds:

Pesquisa do Minas Gerais (FAPEMIG project APQ-03793-16). J. Pereira, D. Vasconcelos, A. Mazoz and A. Alkmim (Universidade Federal de Ouro Preto) are acknowledged for assistance during sample preparation and data acquisition. We thank S. Huhn (Vale) for making available the drill cores intercepting the Azul Formation. Cathodoluminescence images of the zircon grains analyzed during this study were obtained by the Microscopy and Microanalysis Laboratory (LMic) of the Universidade Federal de Ouro Preto, a member of the Microscopy and Microanalysis Network of Minas Gerais State/Brazil/FAPEMIG. We acknowledge David Chew and two anonymous reviewers for constructive comments that helped to clarify and improve the manuscript.

ã

ã

2015/16235-2, 2017/18840-6, 2018/02645-2, 2018/14617-3, 2018/05892-0, 2019/17732-0, 2019/16066-7 and 2019/12132-5), the Conselho Nacional de Desenvolvimento Cientí

gico (CNPq

o Amparo à

fico e Tecnoló

Pesquisa do Estado de Sã

This research was funded by grants of the Fundaç

o Paulo (FAPESP

308045/2013-0 and 307353/2019-2), and the Fundaç

o Amparo à

  • Received Date: 2020-11-15
  • Accepted Date: 2021-04-02
  • Rev Recd Date: 2021-03-19
  • Publish Date: 2021-04-06
  • Despite representing one of the largest cratons on Earth, the early geological evolution of the Amazonia Craton remains poorly known due to relatively poor exposure and because younger metamorphic and tectonic events have obscured initial information. In this study, we investigated the sedimentary archives of the Carajás Basin to unravel the early geological evolution of the southeastern Amazonia Craton. The Carajás Basin contains sedimentary rocks that were deposited throughout a long period spanning more than one billion years from the Mesoarchean to the Paleoproterozoic. The oldest archives preserved in this basin consist of a few ca. 3.6 Ga detrital zircon grains showing that the geological roots of the Amazonia Craton were already formed by the Eoarchean. During the Paleoarchean or the early Mesoarchean (<3.1 Ga), the Carajás Basin was large and rigid enough to sustain the formation and preservation of the Rio Novo Group greenstone belt. Later, during the Neoarchean, at ca. 2.7 Ga, the southeastern Amazonia Craton witnessed the emplacement of the Parauapebas Large Igneous Province (LIP) that probably covered a large part of the craton and was associated with the deposition of some of the world largest iron formations. The emplacement of this LIP immediately preceded a period of continental extension that formed a rift infilled first by iron formations followed by terrigenous sediments. This major change of sedimentary regime might have been controlled by the regional tectonic evolution of the Amazonia Craton and its emergence above sea-level. During the Paleoproterozoic, at ca. 2.1 Ga, the Rio Fresco Group, consisting of terrigenous sediments from the interior of the Amazonia Craton, was deposited in the Carajás Basin. At that time, the Amazonian lithosphere could have either underwent thermal subsidence forming a large intracratonic basin or could have been deformed by long wavelength flexures that induced the formation of basins and swells throughout the craton under the influence of the growing Transamazonian mountain belt.
  • loading
  • [1]
    Abbott, D.H., Isley, A.E., 2002. The instensity, occurrence, and duration of superplume events and eras over geological time. J. Geodyn. 34, 265-307. https://doi.org/10.1016/S0264-3707(02)00024-8
    [2]
    Alkmim, F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil:evidence for Paleoproterozoic collision and collapse in the Quadrilatero Ferri­fero. Precambrian Res. 90, 29-58. https://doi.org/10.1016/S0301-9268(98)00032-1
    [3]
    Almeida, J.A.C., Dall'Agnol, R., Leite, A.A.S., 2013. Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajás Province, Brazil. J. South Am. Earth Sci. 42, 103-126. https://doi.org/10.1016/j.jsames.2012.10.008
    [4]
    Althoff, F., Barbey, P., Boullier, A.M., 2014. 2.8-3.0 Ga plutonism and deformation in the SE Amazonian craton:The Archaean granitoids of Marajoara (Carajas Mineral Province, Brazil). Precambrian Res. 104, 187-206. https://doi.org/10.1016/S0301-9268(00)00103-0
    [5]
    Amidon, W.H., Burbank, D.W., Gehrels, G.E., 2005. Construction of detrital mineral populations:insights from mixing of U-Pb zircon ages in Himalayan rivers. Basin Res. 17, 463-485. https://doi.org/10.1111/j.1365-2117.2005.00279.x
    [6]
    Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance:limiting conditions from statistics and numerical simulation. Chem. Geol. 249-270. https://doi.org/10.1016/j.chemgeo.2004.11.013
    [7]
    Antonio, P.Y.J., D'Agrella-Filho, M.S., Nédélec, A., Poujol, M., Sanchez, C., Dantas, E.L., Dall'Agnol, R., Teixeira, M.F.B., Proietti, A., Martínez Dopico, C.I., Oliveira, D.C., Silva, F.F., Marangoanha, B., Trindade, R.I.F., 2021. New constraints for paleogeographic reconstructions at ca. 1.88 Ga from geochronology and paleomagnetism of the Carajás dyke swarm (eastern Amazonia). Precambrian Res. 353. https://doi.org/10.1016/j.precamres.2020.106039
    [8]
    Antonio, P.Y.J., D'Agrella-Filho, M.S., Trindade, R.I.F., Nédélec, A., de Oliveira, D.C., da Silva, F.F., Roverato, M., Lana, C., 2017. Turmoil before the boring billion:Paleomagnetism of the 1880-1860 Ma Uatumã event in the Amazonian craton. Gondwana Res. 49, 106-129. https://doi.org/10.1016/j.gr.2017.05.006
    [9]
    Araújo Filho, R.C., Nogueira, A.C.R., Araújo, R.N., 2020. New stratigraphic proposal of a paleoproterozoic siliciclastic succession:Implications for the evolution of the Carajás basin, amazonian craton, Brazil. J. South Am. Earth Sci. 102665. https://doi.org/10.1016/j.jsames.2020.102665
    [10]
    Araujo, O.J.B., Maia, R.G.N., 1991. Serra dos Carajás Folha SB.22-Z-A-Estado do Pará. Texto explicativo (in Portuguese).
    [11]
    Araujo, R., Nogueira, A., 2019. Serra sul diamictite of the carajas basin (Brazil):A paleoproterozoic glaciation on the amazonian craton. Geology 47, 1166-1170. https://doi.org/10.1130/G46923.1
    [12]
    Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M., Ganne, J., 2011. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2-2.0Ga), western Burkina Faso. Precambrian Res. 191, 18-45. https://doi.org/10.1016/j.precamres.2011.08.010
    [13]
    Barley, M.E., Bekker, A., Krapez, B., 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
    [14]
    Barley, M.E., Pickard, A.L., Sylvester, P.J., 1997. Emplacement of a large igenous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385, 55-58
    [15]
    Barros, C.E.M., Sardinha, A.S., Barbosa, J.P.O., MacAmbira, M.J.B., Barbey, P., Boullier, A.M., 2009. Structure, petrology, geochemistry and zircon U/Pb and Pb/Pb geochronology of the synkinematic Archean (2.7 Ga) A-type granites from the Carajas metallogenic province, northern Brazil. Can. Mineral. 47, 1423-1440. https://doi.org/10.3749/canmin.47.6.1423
    [16]
    Bauer, A.B., Reimink, J.R., Chacko, T., Foley, B.J., Shirey, S.B., Pearson, D.G., 2020. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochemical Perspect. Lett. 1-6. https://doi.org/10.7185/geochemlet.2015
    [17]
    Bédard, J.H., 2018. Stagnant lids and mantle overturns:Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19-49. https://doi.org/10.1016/j.gsf.2017.01.005
    [18]
    Beisiegel, V.D.R., Bernardelli, A.L., Drummond, N.F., Ruff, A.W., Tremaine, J.W.R., 1973. Geologia e Recursos Minerais da Serra dos Carajás. Rev. Bras. Geociências 3, 215-242
    [19]
    Bekker, A., Slack, J.F., Planavsky, N.J., Krapež, B., Hofmann, A., Konhauser, K.O., Rouxel, O., 2010. Iron formation:The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467-508. https://doi.org/10.2113/gsecongeo.105.3.467
    [20]
    Berni, G.V., Heinrich, C.A., Lobato, L.M., Wall, V.J., Rosière, C.A., Freitas, M.A., 2014. The Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil:Geochemistry, mineralogy, and zoning of hydrothermal alteration. Econ. Geol. 109, 1883-1899. https://doi.org/10.2113/econgeo.109.7.1883
    [21]
    Bertrand, J.-M., Jardim de Sa, E.M., 1990. Where are the Eburnian-Transamazonian collisional belts? Can. J. Earth Sci. 27, 1382-1393
    [22]
    Bindeman, I.N., Zakharov, D.O., Palandri, J., Greber, N.D., Dauphas, N., Retallack, G.J., Hofmann, A., Lackey, J.S., Bekker, A., 2018. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545-548. https://doi.org/10.1038/s41586-018-0131-1
    [23]
    Bryan, S.E., Ernst, R.E., 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Rev. 86, 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
    [24]
    Bühn, B., Santos, R.V., Dardenne, M.A., de Oliveira, C.G., 2012. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem. Geol. 312-313, 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003
    [25]
    Cabral, A.R., Bühn, B., Seabra Gomes, A.A., Galbiatti, H.F., Lehmann, B., Halder, S., 2017. Multiple sulfur isotopes from the Neoarchaean Serra Sul black shale, Carajás mineral province, northern Brazil. J. South Am. Earth Sci. 79, 377-383. https://doi.org/10.1016/j.jsames.2017.08.002
    [26]
    Cabral, A.R., Burgess, R., Lehmann, B., 2011. Late Cretaceous bonanza-style metal enrichment in the Serra Pelada Au-Pd-Pt deposit, pará, Brazil. Econ. Geol. 106, 119-125. https://doi.org/10.2113/econgeo.106.1.119
    [27]
    Cabral, A.R., Creaser, R.A., Nägler, T., Lehmann, B., Voegelin, A.R., Belyatsky, B., Pašava, J., Seabra Gomes, A.A., Galbiatti, H., Böttcher, M.E., Escher, P., 2013. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chem. Geol. 362, 91-104. https://doi.org/10.1016/j.chemgeo.2013.08.041
    [28]
    Cabral, A.R., Riehl, W., 2020. Comments on "Critical assessment of geochronological data from the Carajás Mineral Province, Brazil:implications for metallogeny and tectonic evolution." Ore Geol. Rev. https://doi.org/10.1016/j.oregeorev.2020.103722
    [29]
    Campbell, I.H., 2005. Large igneous provinces and the mantle plume hypothesis. Elements 1, 265-269. https://doi.org/10.2113/gselements.1.5.265
    [30]
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875-878. https://doi.org/10.1130/G32945.1
    [31]
    Cohen, K., Finney, S., Gibbard, P., Fan, J., 2013. The ICS International Chronostratigraphic Chart. Episodes 36, 199-204
    [32]
    Compston, W., Gallagher, K., 2012. New SHRIMP zircon ages from tuffs within the British Palaeozoic stratotypes. Gondwana Res. 21, 719-727. https://doi.org/10.1016/j.gr.2011.11.010
    [33]
    Cordani, U.G., Ramos, V.A., Fraga, L.M., Cegarra, M., Delgado, I., de Souza, K.G., Gomes, F.E.M., Schobbenhaus, C., 2016. Tectonic map of South America at 1:5.9M. Scale 15,900,000 CGMW-CPRM-.
    [34]
    Cordani, U.G., Teixeira, W., 2007. Proterozoic accretionary belts in the Amazonian Craton. Mem. Geol. Soc. Am. 200, 297-320. https://doi.org/10.1130/2007.1200(14)
    [35]
    Cordani, U.G., Teixeira, W., D'Agrella-Filho, M.S., Trindade, R.I., 2009. The position of the Amazonian Craton in supercontinents. Gondwana Res. 15, 396-407. https://doi.org/10.1016/j.gr.2008.12.005
    [36]
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 469-500
    [37]
    Coutts, D.S., Matthews, W.A., Hubbard, S.M., 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci. Front. 10, 1421-1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [38]
    Cox, K.G., 1989. The role of mantle plumes in the development of continental drainage patterns. Nature 342, 873-877. https://doi.org/10.1038/340301a0
    [39]
    Crowley, Q., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., Benn, K., 2014. Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology. Minerals 4, 503-518. https://doi.org/10.3390/min4020503
    [40]
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10, 1765-1787. https://doi.org/10.1016/j.gsf.2019.02.009
    [41]
    Cutts, K., Lana, C., Alkmim, F., Peres, G.G., 2018. Metamorphic imprints on units of the southern Araçuaí belt, SE Brazil:The history of superimposed Transamazonian and Brasiliano orogenesis. Gondwana Res. 58, 211-234. https://doi.org/10.1016/j.gr.2018.02.016
    [42]
    Dall'Agnol, R., Cunha, I.R.V., Guimarães, F.V., Oliveira, D.C., Teixeira, M.F.B., Feio, G.R.L., Lamarão, C.N., 2017. Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton:The origin of hydrated granites associated with charnockites. Lithos 277, 3-32. https://doi.org/10.1016/j.lithos.2016.09.032
    [43]
    Dall'Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B., de Oliveira, D.C., 2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos 80, 101-129. https://doi.org/10.1016/j.lithos.2004.03.058
    [44]
    Dalstra, H., Guedes, S., 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism:A comparison of the Carajás, Hamersley, and other iron ores. Econ. Geol. 99, 1793-1800. https://doi.org/10.2113/gsecongeo.99.8.1793
    [45]
    Dardenne, M.A., Ferreira Filho, C.F., Meirelles, M.R., 1988. The role of shoshonitic and calc-alkaline suites in the tectonic evolution of the Carajás District, Brazil. J. South Am. Earth Sci. 1, 363-372. https://doi.org/10.1016/0895-9811(88)90023-5
    [46]
    de Almeida, F.F.M., Brito Neves, B.B., Carneiro, C.D.R., 2000. The origin and evolution of the South American Platform. Earth-Science Rev. 50, 77-111. https://doi.org/10.1016/S0012-8252(99)00072-0
    [47]
    de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., Tikoff, B., 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20-33. https://doi.org/10.1016/j.tecto.2009.12.009
    [48]
    Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288, 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
    [49]
    Dreher, A.M., Xavier, R.P., Martini, S.L., 2005. Fragmental rocks if the Igarape Bahia Cu-Au deposits, Carajas minaral Province, Brazil. Rev. Bras. Geociências 35, 359-368
    [50]
    Dreher, A.M., Xavier, R.P., Taylor, B.E., Martini, S.L., 2008. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Miner. Depos. 43, 161-184. https://doi.org/10.1007/s00126-007-0150-6
    [51]
    Eriksson, P.G., Catuneanu, O., Sarkar, S., Tirsgaard, H., 2005. Patterns of sedimentation in the Precambrian. Sediment. Geol. 176, 17-42. https://doi.org/10.1016/j.sedgeo.2005.01.003
    [52]
    Eriksson, P.G., Condie, K.C., 2014. Cratonic sedimentation regimes in the ca. 2450-2000Ma period:Relationship to a possible widespread magmatic slowdown on Earth? Gondwana Res. 25, 30-47. https://doi.org/10.1016/j.gr.2012.08.005
    [53]
    Ernst, W.G., 2009. Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res. 15, 243-253. https://doi.org/10.1016/j.gr.2008.06.010
    [54]
    Fabre, S., Nédélec, A., Poitrasson, F., Strauss, H., Thomazo, C., Nogueira, A., 2011. Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil):Implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem. Geol. 289, 124-139. https://doi.org/10.1016/j.chemgeo.2011.07.019
    [55]
    Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003. Detrital Zircon Analysis of the Sedimentary Record, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 277-303
    [56]
    Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Gomes, A.C.B., Sardinha, A.S., Oliveira, D.C., Santos, R.D., Santos, P.A., 2012. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton:A-type or hydrated charnockitic granites? Lithos 151, 57-73. https://doi.org/10.1016/j.lithos.2012.02.020
    [57]
    Figueiredo e Silva, R.C., Lobato, L.M., Rosière, C.A., Hagemann, S., Zucchetti, M., Baars, F.J., Morais, R., Andrade, I., 2008. A Hydrothermal Origin for the Jaspilite-Hosted, Giant Serra Norte Iron Ore Deposits in the Carajás Mineral Province, Pará State, Brazil, in:Hagemann, S., Rosière, C.A., Gutzmer, J., Beukes, N.J. (Eds.), Banded Iron Formation-Related High-Grade Iron Ore. Society of Economic Geologists, pp. 255-290. https://doi.org/10.5382/rev.15.10
    [58]
    Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Santos, J.O.S., Althoff, F.J., Soares, J.E.B., 2013. Archean granitoid magmatism in the Canaã dos Carajás area:Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Res. 227, 157-185. https://doi.org/10.1016/j.precamres.2012.04.007
    [59]
    Flament, N., Coltice, N., Rey, P.F., 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326-336. https://doi.org/10.1016/j.epsl.2008.08.029
    [60]
    Galarza, M.A., Macambira, M.J.B., Villas, R.N., 2008. Dating and isotopic characteristics (Pb and S) of the Fe oxide-Cu-Au-U-REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci. 25, 377-397. https://doi.org/10.1016/j.jsames.2007.07.006
    [61]
    Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J., 2009. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Mar. Pet. Geol. 26, 525-535. https://doi.org/10.1016/j.marpetgeo.2009.01.003
    [62]
    Gawthorpe, R.L., Leeder, M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Res. 12, 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
    [63]
    Gehrels, G.E., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 42, 127-149. https://doi.org/10.1146/annurev-earth-050212-124012
    [64]
    Gibbs, A.K., Wirth, K.R., Hirata, W.K., Olszewski Jr, W.J., 1986. Age and composition of the Grão Pará groups volcanics, Serra dos Carajás. Rev. Bras. Geociências 16, 201-211
    [65]
    Grainger, C.J., Groves, D.I., Tallarico, F.H.B., Fletcher, I.R., 2008. Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil:Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 33, 451-489. https://doi.org/10.1016/j.oregeorev.2006.10.010
    [66]
    Gumsley, A.P., Chamberlain, K.R., Bleeker, W., Soderlund, U., De Kock, M.O., Larsson, E.R., 2017. Timing and tempo of the Great Oxidation Event. Proc. Natl. Acad. Sci. 114, 1811-1816. https://doi.org/10.1073/pnas.1608824114
    [67]
    Hagemann, S.G., Angerer, T., Duuring, P., Rosière, C.A., Figueiredo e Silva, R.C., Lobato, L., Hensler, A.S., Walde, D.H.G., 2016. BIF-hosted iron mineral system:A review. Ore Geol. Rev. 76, 317-359. https://doi.org/10.1016/j.oregeorev.2015.11.004
    [68]
    Hietpas, J., Samson, S., Moecher, D., Chakraborty, S., 2011. Enhancing tectonic and provenance information from detrital zircon studies:assessing terrane-scale sampling and grain-scale characterization. J. Geol. Soc. London. 168, 309-318. https://doi.org/10.1144/0016-76492009-163
    [69]
    Hill, R.I., 1991. Starting plumes and continental break-up. Earth Planet. Sci. Lett. 104, 398-416. https://doi.org/10.1016/0012-821X(91)90218-7
    [70]
    Hirata, W.K., Rigon, J.C., Kadekaru, K., Cordeiro, A.A.C., Meirelles, E.M., 1982. Geologia regional da Província Mineral de Carajás, in:Anais Do Simpósio de Geologia Da Amazônia. Sociedade Brasileira de Geologia-Núcleo Norte, Belém, pp. 100-110 (in Portuguese).
    [71]
    Hurley, P.M., De Almeida, F.F.M., Melcher, G.C., Cordani, U.G., Rand, J.R., Kawashita, K., Vandoros, P., Pinson, W.H., Fairbairn, H.W., 1967. Test of continental drift by comparison of radiometric ages. Science 157(3788), 495-500. https://doi.org/10.1126/science.157.3788.495
    [72]
    Huyskens, M.H., Zink, S., Amelin, Y., 2016. Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology. Chem. Geol. 438, 25-35. https://doi.org/10.1016/j.chemgeo.2016.05.013
    [73]
    Isley, A.E., Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid Earth 104, 15461-15477. https://doi.org/10.1029/1999jb900066
    [74]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [75]
    Jasra, A., Stephens, D.A., Gallagher, K., Holmes, C.C., 2006. Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo. Math. Geol. 38, 269-300. https://doi.org/10.1007/s11004-005-9019-3
    [76]
    Klein, C., Ladeira, E.A., 2002. Petrography and Geochemistry of the Least Altered Banded Iron-Formation of the Archean Carajas Formation, Northern Brazil. Econ. Geol. 97, 643-651. https://doi.org/10.2113/97.3.643
    [77]
    Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G.E., Gerdes, A., Horstwood, M.S.A., Sircombe, K.N., Sylvester, P.J., Tiepolo, M., Whitehouse, M.J., Woodhead, J.D., 2013. U-Pb Detrital Zircon Analysis-Results of an Inter-laboratory Comparison. Geostand. Geoanalytical Res. 37, 243-259. https://doi.org/10.1111/j.1751-908X.2013.00245.x
    [78]
    Košler, J., Sylvester, P.J., 2003. Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 243-275
    [79]
    Krymsky, R.S., Macambira, M.J.B., Lafon, J.-M., Estumano, G.S., 2007. Uranium-lead dating method at the Pará-Iso isotope geology laboratory, UFPA, Belém-Brazil. Brazil. An. Acad. Bras. Cienc. 79, 115-128. https://doi.org/10.1590/S0001-37652007000100014
    [80]
    Kumar, A., Parashuramulu, V., Shankar, R., Besse, J., 2017. Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India:Implications to Vaalbara supercontinent. Precambrian Res. 292, 163-174. https://doi.org/10.1016/j.precamres.2017.01.018
    [81]
    Kump, L.R., Barley, M.E., 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033-1036. https://doi.org/10.1038/nature06058
    [82]
    Lacasse, C.M., Ganade, C.E., Mathieu, L., Teixeira, N.A., Lopes, L.B.L., Monteiro, C.F., 2020. Restoring original composition of hydrothermally altered Archean metavolcanic rocks of the Carajás Mineral Province (Brazil):Geodynamic implications for the transition from lid to mobile tectonics. Lithos 372-373, 105647. https://doi.org/10.1016/j.lithos.2020.105647
    [83]
    Lawrence, R.L., Cox, R., Mapes, R.W., Coleman, D.S., 2011. Hydrodynamic fractionation of zircon age populations. Geol. Soc. Am. Bull. 123, 295-305. https://doi.org/10.1130/B30151.1
    [84]
    Licht, A., Pullen, A., Kapp, P., Abell, J., Giesler, N., 2016. Eolian cannibalism:Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geol. Soc. Am. Bull. 128, 944-956. https://doi.org/10.1130/B31375.1
    [85]
    Lindenmayer, Z.G., Laux, J.H., Teixeira, J.B.G., 2001. Concidarações sobre a origem das formações ferríferas da Formação Carajás, Serra dos Carajás. Rev. Bras. Geociências 31, 21-28 (in Portuguese). https://doi.org/10.25249/0375-7536.20013112128
    [86]
    Ludwig, K.R., 2012. User's Manual for a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Cent. 75
    [87]
    Ludwig, K.R., 1998. On the Treatment of Concordant Uranium-Lead Ages. Geochim. Cosmochim. Acta 62, 665-676. https://doi.org/10.1016/S0016-7037(98)00059-3
    [88]
    Macambira, M.J.B., Lancelot, J.R., 1996. Time constraints for the formation of the Archean Rio Maria crust, southeastern Amazonian Craton, Brazil. Int. Geol. Rev. 38, 1134-1142. https://doi.org/10.1080/00206819709465386
    [89]
    Macambira, M.J.B., Schrank, A., 2002. Químio-estratigrafia e evolução dos jaspilitos da Formação Carajás (PA). Rev. Bras. Geociências 32, 567-578 (in Portuguese). https://doi.org/10.25249/0375-7536.2002324567578
    [90]
    Macambira, M.J.B., Vasquez, M.L., Silva, D.C.C., Galarza, M.A., Barros, C.E.M., Camelo, J.F., 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SW Amazonian craton:Juvenile accretion vs. reworking. J. South Am. Earth Sci. 27, 235-246. https://doi.org/10.1016/j.jsames.2009.02.001
    [91]
    Machado, N., Lindenmayer, Z., Krogh, T.E., Lindenmayer, D., 1991. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res. 49, 329-354. https://doi.org/10.1016/0301-9268(91)90040-H
    [92]
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett. 141, 259-276. https://doi.org/10.1016/0012-821X(96)00054-4
    [93]
    Mansur, E.T., Ferreira Filho, C.F., 2016. Magmatic structure and geochemistry of the Luanga Mafic-Ultramafic Complex:Further constraints for the PGE-mineralized magmatism in Carajás, Brazil. Lithos 266-267, 28-43. https://doi.org/10.1016/j.lithos.2016.09.036
    [94]
    Markwitz, V., Kirkland, C.L., 2018. Source to sink zircon grain shape:Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance. Geosci. Front. 9, 431-439. https://doi.org/10.1016/j.gsf.2017.04.004
    [95]
    Martins, P.L.G., Toledo, C.L.B., Silva, A.M., Chemale, F., Santos, J.O.S., Assis, L.M., 2017. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil:Petrography, geochemistry and tectonic significance of basalts from the Carajás Basin. Precambrian Res. 302, 340-357. https://doi.org/10.1016/j.precamres.2017.10.013
    [96]
    Melo, G.H.C., Monteiro, L.V.S., Xavier, R.P., Moreto, C.P.N., Arquaz, R.M., Silva, M.A.D., 2019. Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil):Early syngenetic chalcopyrite overprinted by IOCG mineralization. Ore Geol. Rev. 111, 102993. https://doi.org/10.1016/j.oregeorev.2019.102993
    [97]
    Melo, G.H.C., Monteiro, L.V.S., Xavier, R.P., Moreto, C.P.N., Santiago, E.S.B., Dufrane, S.A., Aires, B., Santos, A.F.F., 2017. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil):constraints from paragenesis of hydrothermal alteration and U-Pb geochronology. Miner. Depos. 52, 709-732. https://doi.org/10.1007/s00126-016-0693-5
    [98]
    Milhomem Neto, J.M., Lafon, J.M., 2019. Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield. Geosci. Front. 10, 1477-1506. https://doi.org/10.1016/j.gsf.2018.09.012
    [99]
    Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C., 2018. Evolution of Siderian juvenile crust to Rhyacian high Ba-Sr magmatism in the Mineiro Belt, southern São Francisco Craton. Geosci. Front. 9, 977-995. https://doi.org/10.1016/j.gsf.2018.01.009
    [100]
    Moreto, C.P.N., Monteiro, L.V.S., Xavier, R.P., Creaser, R.A., DuFrane, S.A., Tassinari, C.C.G., Sato, K., Kemp, A.I.S., Amaral, W.S., 2015. Neoarchean and paleoproterozoic iron oxide-copper-gold events at the sossego deposit, Carajás Province, Brazil:Re-Os and U-Pb geochronological evidence. Econ. Geol. 110, 809-835. https://doi.org/10.2113/econgeo.110.3.809
    [101]
    Motta, J.G., Souza Filho, C.R., Carranza, E.J.M., Braitenberg, C., 2019. Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data. Sci. Rep. 9, 2565. https://doi.org/10.1038/s41598-019-39171-9
    [102]
    Najman, Y., 2006. The detrital record of orogenesis:A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Science Rev. 74, 1-72. https://doi.org/10.1016/j.earscirev.2005.04.004
    [103]
    Olszewski, W.J., Wirth, K.R., Gibbs, A.K., Gaudette, H.E., 1989. The age, origin, and tectonics of the Grão Pará Group and associated rocks, Serra dos Carajás, Brazil:Archean continental volcanism and rifting. Precambrian Res. 42, 229-254. https://doi.org/10.1016/0301-9268(89)90013-2
    [104]
    Parra-Avila, L.A., Baratoux, L., Eglinger, A., Fiorentini, M.L., Block, S., 2019. The Eburnean magmatic evolution across the Baoulé-Mossi domain:Geodynamic implications for the West African Craton. Precambrian Res. 332, 105392. https://doi.org/10.1016/j.precamres.2019.105392
    [105]
    Pehrsson, S.J., Berman, R.G., Eglington, B., Rainbird, R., 2013. Two Neoarchean supercontinents revisited:The case for a Rae family of cratons. Precambrian Res. 232, 27-43. https://doi.org/10.1016/j.precamres.2013.02.005
    [106]
    Peters, T.J., Valarelli, J.V., Coutinho, J.M.V., Sommerauer, J., von Raumer, J., 1977. The manganese deposits of Buritirama (Pará, Brazil). Schweizerische Mineral. und Petrogr. Mitteilungen-Bull. suisse minéralogie pétrographie 57, 313-327. https://doi.org/http://dx.doi.org/10.5169/seals-44438 Nutzungsbedingungen
    [107]
    Pidgeon, R.T., MacAmbira, M.J.B., Lafon, J.M., 2000. Th-U-Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajas Province, Brazil:Evidence for the ages of granulite facies metamorphism and the protolith of the enderbite. Chem. Geol. 166, 159-171. https://doi.org/10.1016/S0009-2541(99)00190-4
    [108]
    Pinheiro, R.V.L., Holdsworth, R.E., 1997. Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. J. Geol. Soc. London. 154, 99-103. https://doi.org/10.1144/gsjgs.154.1.0099
    [109]
    Pons, M.L., Fujii, T., Rosing, M., Quitté, G., Télouk, P., Albarède, F., 2013. A Zn isotope perspective on the rise of continents. Geobiology 11, 201-214. https://doi.org/10.1111/gbi.12030
    [110]
    Pullen, A., Ibanez-Mejia, M., Gehrels, G.E., Ibanez-Mejia, J.C., Pecha, M., 2014. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations. J. Anal. At. Spectrom. 29, 971-980. https://doi.org/10.1039/c4ja00024b
    [111]
    Rasmussen, B., Bekker, A., Fletcher, I.R., 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173-180. https://doi.org/10.1016/j.epsl.2013.08.037
    [112]
    Rego, E.S., Busigny, V., Lalonde, S.V., Philippot, P., Bouyon, A., Rossignol, C., Babinski, M., Zapparoli, A., 2021. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology, in press. https://doi.org/10.1111/gbi.12438
    [113]
    Requia, K., Stein, H., Fontboté, L., Chiaradia, M., 2003. Re-Os and Pb-Pb geochronology of the Archean Salobo iron oxide copper-gold deposit, Carajás mineral province, northern Brazil. Miner. Depos. 38, 727-738. https://doi.org/10.1007/s00126-003-0364-1
    [114]
    Rey, P.F., Coltice, N., 2008. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36, 635-638. https://doi.org/10.1130/G25031A.1
    [115]
    Ribeiro da Luz, B., Crowley, J.K., 2012. Morphological and chemical evidence of stromatolitic deposits in the 2.75Ga Carajás banded iron formation, Brazil. Earth Planet. Sci. Lett. 355-356, 60-72. https://doi.org/10.1016/j.epsl.2012.08.028
    [116]
    Ronov, A.B., 1972. Evolution of Rock Composition and Geochemical Processes in the Sedimentary Shell of the Earth. Sedimentology 19, 157-172. https://doi.org/10.1111/j.1365-3091.1972.tb00019.x
    [117]
    Ronze, P.C., Soares, A.D.V., Santos, M.G.S., Barreira, C.F., 2000. Alemao copper-gold (U-REE) deposits, Carajas, Brazil, in:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PCG Publishing, pp. 191-202.
    [118]
    Rossignol, C., Bourquin, S., Poujol, M., Hallot, E., Dabard, M.-P., Nalpas, T., 2016. The volcaniclastic series from the Luang Prabang Basin, Laos:A witness of a triassic magmatic arc ? J. Asian Earth Sci. 120, 159-183. https://doi.org/10.1016/j.jseaes.2016.02.001
    [119]
    Rossignol, C., Rego, E., Narduzzi, F., Teixeira, L., Avila, J.N., Silva, M.A.L., Lana, C., Philippot, P., 2020a. Stratigraphy and geochronological constraints of the Serra Sul Formation (Carajas Basin, Amazonian Craton, Brazil). Precambrian Res. 351, 105981. https://doi.org/10.1016/j.precamres.2020.105981
    [120]
    Rossignol, C., Lana, C., Alkmim, F., 2020b. Geodynamic evolution of the Minas Basin, southern São Francisco Craton (Brazil), during the early Paleoproterozoic:Climate or tectonic? J. South Am. Earth Sci. 101, 102628. https://doi.org/10.1016/j.jsames.2020.102628
    [121]
    Roverato, M., 2016. The Montesbelos mass-flow (southern Amazonian craton, Brazil):a Paleoproterozoic volcanic debris avalanche deposit? Bull. Volcanol. 78, 1-6. https://doi.org/10.1007/s00445-016-1043-2
    [122]
    Rubatto, D., 2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184, 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
    [123]
    Salminen, J., Oliveira, E.P., Piispa, E.J., Smirnov, A.V., Trindade, R.I.F., 2019. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil:Implications for Archean supercratons. Precambrian Res. 329, 108-123. https://doi.org/10.1016/j.precamres.2018.12.001
    [124]
    Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., Fletcher, I.R., 2000. A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Res. 3, 453-488. https://doi.org/10.1016/S1342-937X(05)70755-3
    [125]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A.R., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanalytical Res. 41, 335-358. https://doi.org/10.1111/ggr.12167
    [126]
    Sardinha, A.S., Barros, C.E.M., Krymsky, R., 2006. Geology, geochemistry, and U-Pb geochronology of the Archean (2.74 Ga) Serra do Rabo granite stocks, Carajás Metallogenetic Province, northern Brazil. J. South Am. Earth Sci. 20, 327-339. https://doi.org/10.1016/j.jsames.2005.11.001
    [127]
    Schofield, D.I., Horstwood, M.S.A., Pitfield, P.E.J., Crowley, Q.G., Wilkinson, A.F., Sidaty, H.C.O., 2006. Timing and kinematics of Eburnean tectonics in the central Reguibat Shield, Mauritania. J. Geol. Soc. London. 163, 549-560. https://doi.org/10.1144/0016-764905-097
    [128]
    Schröder, S., Bedorf, D., Beukes, N.J., Gutzmer, J., 2011. From BIF to red beds:Sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sediment. Geol. 236, 25-44. https://doi.org/10.1016/j.sedgeo.2010.11.007
    [129]
    Shore, M., Fowler, A.D., 1996. Oscillatory zoning in minerals:a common phenomenon. Can. Mineral. 34, 1111-1126
    [130]
    Siepierski, L., Ferreira Filho, C.F., 2020. Magmatic structure and petrology of the Vermelho Complex, Carajás Mineral Province, Brazil:Evidence for magmatic processes at the lower portion of a mafic-ultramafic intrusion. J. South Am. Earth Sci. 102, 102700. https://doi.org/10.1016/j.jsames.2020.102700
    [131]
    Siepierski, L., Ferreira Filho, C.F., 2016. Spinifex-textured komatiites in the south border of the Carajas ridge, Selva Greenstone belt, Carajás Province, Brazil. J. South Am. Earth Sci. 66, 41-55. https://doi.org/10.1016/j.jsames.2015.12.011
    [132]
    Silva, F.F.D., Oliveira, D.C.D., Antonio, P.Y.J., D'Agrella-Filho, M.S., Lamarao, C.N., 2016. Bimodal magmatism of the Tucumã area, Carajás province:U-Pb geochronology, classification and processes. J. South Am. Earth Sci. 72, 95-114. https://doi.org/10.1016/j.jsames.2016.07.016
    [133]
    Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [134]
    Souza, S.R.C., Botelho, N.F., Dantas, E.L., Jiménez, F.A.C., Reis, M.A., Viana, C.S., 2020. Geochemistry and isotopic geology of the Lagoa Seca gold deposit in the Andorinhas greenstone-belt, Carajás Province, Brazil. J. South Am. Earth Sci. 99, 102523. https://doi.org/10.1016/j.jsames.2020.102523
    [135]
    Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581-589. https://doi.org/10.1016/j.gsf.2015.11.006
    [136]
    Tallarico, F.H.B., Figueiredo, B.R., Groves, D.I., Kositcin, N., McNaughton, N.J., Fletcher, I.R., Rego, J.L., 2005. Geology and SHRIMP U-Pb geochronology of the Igarapé Bahia deposit, Carajás copper-gold belt, Brazil:An Archean (2.57 Ga) example of Iron-Oxide Cu-Au-(U-REE) mineralization. Econ. Geol. 100, 7-28. https://doi.org/10.2113/100.1.0007
    [137]
    Tang, H., Chen, Y., 2013. Global glaciations and atmospheric change at ca. 2.3 Ga. Geosci. Front. 4, 583-596. https://doi.org/10.1016/j.gsf.2013.02.003
    [138]
    Tassinari, C.C.G., Macambira, M.J.B., 1999. Geochronological provinces of the Amazonian Craton. Episodes 22, 174-182. https://doi.org/10.18814/epiiugs/1999/v22i3/004
    [139]
    Tavares, F.M., Trouw, R.A.J., da Silva, C.M.G., Justo, A.P., Oliveira, J.K.M., 2018. The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil:Revealing complex structural patterns. J. South Am. Earth Sci. 88, 238-252. https://doi.org/10.1016/j.jsames.2018.08.024
    [140]
    Teixeira, J.B.G., Eggler, D.H., 1994. Petrology, geochemistry, and tectonic setting of Archean basaltic and dioritic rocks from the N4 iron deposit, Serra dos Carajás, Pará, Brazil. Acta Geol. Leopoldensia 17, 71-114
    [141]
    Teixeira, W., Figueiredo, M.C.H., 1991. An outline of Early Proterozoic crustal evolution in the São Francisco craton, Brazil:a review. Precambrian Res. 53, 1-22. https://doi.org/10.1016/0301-9268(91)90003-S
    [142]
    Teixeira, W., Hamilton, M.A., Girardi, V.A.V., Faleiros, F.M., Ernst, R.E., 2019. U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa areas):Tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma. Precambrian Res. 329, 138-155. https://doi.org/10.1016/j.precamres.2018.02.008
    [143]
    Tolbert, G.E., Tremaine, J.W., Melcher, G.C., Gomes, C.B., 1971. The Recently Discovered Serra dos Carajás Iron Deposits, northern Brazil. Econ. Geol. 66, 985-994. https://doi.org/https://doi.org/10.2113/gsecongeo.66.7.985
    [144]
    Toledo, P.I.F., Moreto, C.P.N., Xavier, R.P., Gao, J.F., de Matos, J.H.S.N., de Melo, G.H.C., 2019. Multistage evolution of the Neoarchean (ca. 2.7 Ga) Igarapé cinzento (GT-46) iron oxide copper-gold deposit, Cinzento shear zone, Carajás Province, Brazil. Econ. Geol. 114, 1-34. https://doi.org/10.5382/econgeo.2019.4617
    [145]
    Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphic record, in:Altermann, W., Corcoran, P.L. (Eds.), Special Publication of the International Association of Sedimentologists. International Association of Sedimentologists Special Publication, pp. 33-66.
    [146]
    Trendall, A.F., Basei, M.A.S., De Laeter, J.R., Nelson, D.R., 1998. SHRIMP zircon U-Pb constraints on the age of the Carajas formation, Grao Para Group, Amazon Craton. J. South Am. Earth Sci. 11, 265-277. https://doi.org/10.1016/S0895-9811(98)00015-7
    [147]
    Trunfull, E.F., Hagemann, S., Xavier, R.P., Moreto, C.P.N., 2020. Critical assessment of geochronological data from the Carajás Mineral Province, Brazil:implications for metallogeny and tectonic evolution. Ore Geol. Rev. 103556. https://doi.org/10.1016/j.oregeorev.2020.103556
    [148]
    Turner, S., Rushmer, T., Reagan, M., Moyen, J.-F., 2014. Heading down early on? Start of subduction on earth. Geology 42, 139-142. https://doi.org/10.1130/G34886.1
    [149]
    Vasquez, M.L., Rosa-Costa, L.T., 2008. Geologia e recursos minerais do estado do Pará:texto explicativo. CPRM-Serviço Geol. do Bras. 328 (in Portuguese)
    [150]
    Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312-313, 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [151]
    Villas, R.N., Santos, M.D., 2001. Gold deposits of the Carajás mineral province:Deposit types and metallogenesis. Miner. Depos. 36, 300-331. https://doi.org/10.1007/s001260100178
    [152]
    Vlaar, N.J., 2000. Continental emergence and growth on a cooling Earth. Tectonophysics 322, 191-202. https://doi.org/10.1016/S0040-1951(00)00063-9
    [153]
    von Quadt, A., Gallhofer, D., Guillong, M., Peytcheva, I., Waelle, M., Sakata, S., 2014. U-Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques:Impact for their geological interpretation. J. Anal. At. Spectrom. 29, 1618-1629. https://doi.org/10.1039/C4JA00102H
    [154]
    Windley, B.F., Kusky, T., Polat, A., 2021. Onset of plate tectonics by the Eoarchean. Precambrian Res. 352, 105980. https://doi.org/10.1016/j.precamres.2020.105980
    [155]
    Wirth, K.R., Gibbs, A.K., Olszewski, W.J., 1986. U-Pb ages of zircons from the Grão-Pará Group and Serra dos Carajás Granites, Pará, Brazil. Rev. Bras. Geociências 16, 195-200
    [156]
    Young, G.M., 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci. Front. 4, 247-261. https://doi.org/10.1016/j.gsf.2012.07.003
    [157]
    Vasquez, M.L., Sousa, C.S., Carvalho, J.M.A., 2008. Mapa Geológico do Estado do Pará. Scale 11,000,000 (in Portuguese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (49) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return