Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Camille Rossignol, Paul Yves Jean Antonio, Francesco Narduzzi, Eric Siciliano Rego, Lívia Teixeira, Romário Almeida de Souza, Janaína N. Ávila, Marco A.L. Silva, Cristiano Lana, Ricardo I.F. Trindade, Pascal Philippot. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses[J]. Geoscience Frontiers, 2022, 13(5): 101202. doi: 10.1016/j.gsf.2021.101202
Citation: Camille Rossignol, Paul Yves Jean Antonio, Francesco Narduzzi, Eric Siciliano Rego, Lívia Teixeira, Romário Almeida de Souza, Janaína N. Ávila, Marco A.L. Silva, Cristiano Lana, Ricardo I.F. Trindade, Pascal Philippot. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses[J]. Geoscience Frontiers, 2022, 13(5): 101202. doi: 10.1016/j.gsf.2021.101202

Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses

doi: 10.1016/j.gsf.2021.101202

Pesquisa do Minas Gerais (FAPEMIG project APQ-03793-16). J. Pereira, D. Vasconcelos, A. Mazoz and A. Alkmim (Universidade Federal de Ouro Preto) are acknowledged for assistance during sample preparation and data acquisition. We thank S. Huhn (Vale) for making available the drill cores intercepting the Azul Formation. Cathodoluminescence images of the zircon grains analyzed during this study were obtained by the Microscopy and Microanalysis Laboratory (LMic) of the Universidade Federal de Ouro Preto, a member of the Microscopy and Microanalysis Network of Minas Gerais State/Brazil/FAPEMIG. We acknowledge David Chew and two anonymous reviewers for constructive comments that helped to clarify and improve the manuscript.



2015/16235-2, 2017/18840-6, 2018/02645-2, 2018/14617-3, 2018/05892-0, 2019/17732-0, 2019/16066-7 and 2019/12132-5), the Conselho Nacional de Desenvolvimento Cientí

gico (CNPq

o Amparo à

fico e Tecnoló

Pesquisa do Estado de Sã

This research was funded by grants of the Fundaç

o Paulo (FAPESP

308045/2013-0 and 307353/2019-2), and the Fundaç

o Amparo à

  • Received Date: 2020-11-15
  • Accepted Date: 2021-04-02
  • Rev Recd Date: 2021-03-19
  • Publish Date: 2021-04-06
  • Despite representing one of the largest cratons on Earth, the early geological evolution of the Amazonia Craton remains poorly known due to relatively poor exposure and because younger metamorphic and tectonic events have obscured initial information. In this study, we investigated the sedimentary archives of the Carajás Basin to unravel the early geological evolution of the southeastern Amazonia Craton. The Carajás Basin contains sedimentary rocks that were deposited throughout a long period spanning more than one billion years from the Mesoarchean to the Paleoproterozoic. The oldest archives preserved in this basin consist of a few ca. 3.6 Ga detrital zircon grains showing that the geological roots of the Amazonia Craton were already formed by the Eoarchean. During the Paleoarchean or the early Mesoarchean (<3.1 Ga), the Carajás Basin was large and rigid enough to sustain the formation and preservation of the Rio Novo Group greenstone belt. Later, during the Neoarchean, at ca. 2.7 Ga, the southeastern Amazonia Craton witnessed the emplacement of the Parauapebas Large Igneous Province (LIP) that probably covered a large part of the craton and was associated with the deposition of some of the world largest iron formations. The emplacement of this LIP immediately preceded a period of continental extension that formed a rift infilled first by iron formations followed by terrigenous sediments. This major change of sedimentary regime might have been controlled by the regional tectonic evolution of the Amazonia Craton and its emergence above sea-level. During the Paleoproterozoic, at ca. 2.1 Ga, the Rio Fresco Group, consisting of terrigenous sediments from the interior of the Amazonia Craton, was deposited in the Carajás Basin. At that time, the Amazonian lithosphere could have either underwent thermal subsidence forming a large intracratonic basin or could have been deformed by long wavelength flexures that induced the formation of basins and swells throughout the craton under the influence of the growing Transamazonian mountain belt.
  • loading
  • [1]
    Abbott, D.H., Isley, A.E., 2002. The instensity, occurrence, and duration of superplume events and eras over geological time. J. Geodyn. 34, 265-307. https://doi.org/10.1016/S0264-3707(02)00024-8
    Alkmim, F., Marshak, S., 1998. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil:evidence for Paleoproterozoic collision and collapse in the Quadrilatero Ferri­fero. Precambrian Res. 90, 29-58. https://doi.org/10.1016/S0301-9268(98)00032-1
    Almeida, J.A.C., Dall'Agnol, R., Leite, A.A.S., 2013. Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajás Province, Brazil. J. South Am. Earth Sci. 42, 103-126. https://doi.org/10.1016/j.jsames.2012.10.008
    Althoff, F., Barbey, P., Boullier, A.M., 2014. 2.8-3.0 Ga plutonism and deformation in the SE Amazonian craton:The Archaean granitoids of Marajoara (Carajas Mineral Province, Brazil). Precambrian Res. 104, 187-206. https://doi.org/10.1016/S0301-9268(00)00103-0
    Amidon, W.H., Burbank, D.W., Gehrels, G.E., 2005. Construction of detrital mineral populations:insights from mixing of U-Pb zircon ages in Himalayan rivers. Basin Res. 17, 463-485. https://doi.org/10.1111/j.1365-2117.2005.00279.x
    Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance:limiting conditions from statistics and numerical simulation. Chem. Geol. 249-270. https://doi.org/10.1016/j.chemgeo.2004.11.013
    Antonio, P.Y.J., D'Agrella-Filho, M.S., Nédélec, A., Poujol, M., Sanchez, C., Dantas, E.L., Dall'Agnol, R., Teixeira, M.F.B., Proietti, A., Martínez Dopico, C.I., Oliveira, D.C., Silva, F.F., Marangoanha, B., Trindade, R.I.F., 2021. New constraints for paleogeographic reconstructions at ca. 1.88 Ga from geochronology and paleomagnetism of the Carajás dyke swarm (eastern Amazonia). Precambrian Res. 353. https://doi.org/10.1016/j.precamres.2020.106039
    Antonio, P.Y.J., D'Agrella-Filho, M.S., Trindade, R.I.F., Nédélec, A., de Oliveira, D.C., da Silva, F.F., Roverato, M., Lana, C., 2017. Turmoil before the boring billion:Paleomagnetism of the 1880-1860 Ma Uatumã event in the Amazonian craton. Gondwana Res. 49, 106-129. https://doi.org/10.1016/j.gr.2017.05.006
    Araújo Filho, R.C., Nogueira, A.C.R., Araújo, R.N., 2020. New stratigraphic proposal of a paleoproterozoic siliciclastic succession:Implications for the evolution of the Carajás basin, amazonian craton, Brazil. J. South Am. Earth Sci. 102665. https://doi.org/10.1016/j.jsames.2020.102665
    Araujo, O.J.B., Maia, R.G.N., 1991. Serra dos Carajás Folha SB.22-Z-A-Estado do Pará. Texto explicativo (in Portuguese).
    Araujo, R., Nogueira, A., 2019. Serra sul diamictite of the carajas basin (Brazil):A paleoproterozoic glaciation on the amazonian craton. Geology 47, 1166-1170. https://doi.org/10.1130/G46923.1
    Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M., Ganne, J., 2011. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (~2.2-2.0Ga), western Burkina Faso. Precambrian Res. 191, 18-45. https://doi.org/10.1016/j.precamres.2011.08.010
    Barley, M.E., Bekker, A., Krapez, B., 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
    Barley, M.E., Pickard, A.L., Sylvester, P.J., 1997. Emplacement of a large igenous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385, 55-58
    Barros, C.E.M., Sardinha, A.S., Barbosa, J.P.O., MacAmbira, M.J.B., Barbey, P., Boullier, A.M., 2009. Structure, petrology, geochemistry and zircon U/Pb and Pb/Pb geochronology of the synkinematic Archean (2.7 Ga) A-type granites from the Carajas metallogenic province, northern Brazil. Can. Mineral. 47, 1423-1440. https://doi.org/10.3749/canmin.47.6.1423
    Bauer, A.B., Reimink, J.R., Chacko, T., Foley, B.J., Shirey, S.B., Pearson, D.G., 2020. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochemical Perspect. Lett. 1-6. https://doi.org/10.7185/geochemlet.2015
    Bédard, J.H., 2018. Stagnant lids and mantle overturns:Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19-49. https://doi.org/10.1016/j.gsf.2017.01.005
    Beisiegel, V.D.R., Bernardelli, A.L., Drummond, N.F., Ruff, A.W., Tremaine, J.W.R., 1973. Geologia e Recursos Minerais da Serra dos Carajás. Rev. Bras. Geociências 3, 215-242
    Bekker, A., Slack, J.F., Planavsky, N.J., Krapež, B., Hofmann, A., Konhauser, K.O., Rouxel, O., 2010. Iron formation:The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467-508. https://doi.org/10.2113/gsecongeo.105.3.467
    Berni, G.V., Heinrich, C.A., Lobato, L.M., Wall, V.J., Rosière, C.A., Freitas, M.A., 2014. The Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil:Geochemistry, mineralogy, and zoning of hydrothermal alteration. Econ. Geol. 109, 1883-1899. https://doi.org/10.2113/econgeo.109.7.1883
    Bertrand, J.-M., Jardim de Sa, E.M., 1990. Where are the Eburnian-Transamazonian collisional belts? Can. J. Earth Sci. 27, 1382-1393
    Bindeman, I.N., Zakharov, D.O., Palandri, J., Greber, N.D., Dauphas, N., Retallack, G.J., Hofmann, A., Lackey, J.S., Bekker, A., 2018. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545-548. https://doi.org/10.1038/s41586-018-0131-1
    Bryan, S.E., Ernst, R.E., 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Rev. 86, 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
    Bühn, B., Santos, R.V., Dardenne, M.A., de Oliveira, C.G., 2012. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem. Geol. 312-313, 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003
    Cabral, A.R., Bühn, B., Seabra Gomes, A.A., Galbiatti, H.F., Lehmann, B., Halder, S., 2017. Multiple sulfur isotopes from the Neoarchaean Serra Sul black shale, Carajás mineral province, northern Brazil. J. South Am. Earth Sci. 79, 377-383. https://doi.org/10.1016/j.jsames.2017.08.002
    Cabral, A.R., Burgess, R., Lehmann, B., 2011. Late Cretaceous bonanza-style metal enrichment in the Serra Pelada Au-Pd-Pt deposit, pará, Brazil. Econ. Geol. 106, 119-125. https://doi.org/10.2113/econgeo.106.1.119
    Cabral, A.R., Creaser, R.A., Nägler, T., Lehmann, B., Voegelin, A.R., Belyatsky, B., Pašava, J., Seabra Gomes, A.A., Galbiatti, H., Böttcher, M.E., Escher, P., 2013. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chem. Geol. 362, 91-104. https://doi.org/10.1016/j.chemgeo.2013.08.041
    Cabral, A.R., Riehl, W., 2020. Comments on "Critical assessment of geochronological data from the Carajás Mineral Province, Brazil:implications for metallogeny and tectonic evolution." Ore Geol. Rev. https://doi.org/10.1016/j.oregeorev.2020.103722
    Campbell, I.H., 2005. Large igneous provinces and the mantle plume hypothesis. Elements 1, 265-269. https://doi.org/10.2113/gselements.1.5.265
    Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology 40, 875-878. https://doi.org/10.1130/G32945.1
    Cohen, K., Finney, S., Gibbard, P., Fan, J., 2013. The ICS International Chronostratigraphic Chart. Episodes 36, 199-204
    Compston, W., Gallagher, K., 2012. New SHRIMP zircon ages from tuffs within the British Palaeozoic stratotypes. Gondwana Res. 21, 719-727. https://doi.org/10.1016/j.gr.2011.11.010
    Cordani, U.G., Ramos, V.A., Fraga, L.M., Cegarra, M., Delgado, I., de Souza, K.G., Gomes, F.E.M., Schobbenhaus, C., 2016. Tectonic map of South America at 1:5.9M. Scale 15,900,000 CGMW-CPRM-.
    Cordani, U.G., Teixeira, W., 2007. Proterozoic accretionary belts in the Amazonian Craton. Mem. Geol. Soc. Am. 200, 297-320. https://doi.org/10.1130/2007.1200(14)
    Cordani, U.G., Teixeira, W., D'Agrella-Filho, M.S., Trindade, R.I., 2009. The position of the Amazonian Craton in supercontinents. Gondwana Res. 15, 396-407. https://doi.org/10.1016/j.gr.2008.12.005
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 469-500
    Coutts, D.S., Matthews, W.A., Hubbard, S.M., 2019. Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geosci. Front. 10, 1421-1435. https://doi.org/10.1016/j.gsf.2018.11.002
    Cox, K.G., 1989. The role of mantle plumes in the development of continental drainage patterns. Nature 342, 873-877. https://doi.org/10.1038/340301a0
    Crowley, Q., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., Benn, K., 2014. Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology. Minerals 4, 503-518. https://doi.org/10.3390/min4020503
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10, 1765-1787. https://doi.org/10.1016/j.gsf.2019.02.009
    Cutts, K., Lana, C., Alkmim, F., Peres, G.G., 2018. Metamorphic imprints on units of the southern Araçuaí belt, SE Brazil:The history of superimposed Transamazonian and Brasiliano orogenesis. Gondwana Res. 58, 211-234. https://doi.org/10.1016/j.gr.2018.02.016
    Dall'Agnol, R., Cunha, I.R.V., Guimarães, F.V., Oliveira, D.C., Teixeira, M.F.B., Feio, G.R.L., Lamarão, C.N., 2017. Mineralogy, geochemistry, and petrology of Neoarchean ferroan to magnesian granites of Carajás Province, Amazonian Craton:The origin of hydrated granites associated with charnockites. Lithos 277, 3-32. https://doi.org/10.1016/j.lithos.2016.09.032
    Dall'Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B., de Oliveira, D.C., 2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos 80, 101-129. https://doi.org/10.1016/j.lithos.2004.03.058
    Dalstra, H., Guedes, S., 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism:A comparison of the Carajás, Hamersley, and other iron ores. Econ. Geol. 99, 1793-1800. https://doi.org/10.2113/gsecongeo.99.8.1793
    Dardenne, M.A., Ferreira Filho, C.F., Meirelles, M.R., 1988. The role of shoshonitic and calc-alkaline suites in the tectonic evolution of the Carajás District, Brazil. J. South Am. Earth Sci. 1, 363-372. https://doi.org/10.1016/0895-9811(88)90023-5
    de Almeida, F.F.M., Brito Neves, B.B., Carneiro, C.D.R., 2000. The origin and evolution of the South American Platform. Earth-Science Rev. 50, 77-111. https://doi.org/10.1016/S0012-8252(99)00072-0
    de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R., Tikoff, B., 2011. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20-33. https://doi.org/10.1016/j.tecto.2009.12.009
    Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288, 115-125. https://doi.org/10.1016/j.epsl.2009.09.013
    Dreher, A.M., Xavier, R.P., Martini, S.L., 2005. Fragmental rocks if the Igarape Bahia Cu-Au deposits, Carajas minaral Province, Brazil. Rev. Bras. Geociências 35, 359-368
    Dreher, A.M., Xavier, R.P., Taylor, B.E., Martini, S.L., 2008. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Miner. Depos. 43, 161-184. https://doi.org/10.1007/s00126-007-0150-6
    Eriksson, P.G., Catuneanu, O., Sarkar, S., Tirsgaard, H., 2005. Patterns of sedimentation in the Precambrian. Sediment. Geol. 176, 17-42. https://doi.org/10.1016/j.sedgeo.2005.01.003
    Eriksson, P.G., Condie, K.C., 2014. Cratonic sedimentation regimes in the ca. 2450-2000Ma period:Relationship to a possible widespread magmatic slowdown on Earth? Gondwana Res. 25, 30-47. https://doi.org/10.1016/j.gr.2012.08.005
    Ernst, W.G., 2009. Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res. 15, 243-253. https://doi.org/10.1016/j.gr.2008.06.010
    Fabre, S., Nédélec, A., Poitrasson, F., Strauss, H., Thomazo, C., Nogueira, A., 2011. Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil):Implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem. Geol. 289, 124-139. https://doi.org/10.1016/j.chemgeo.2011.07.019
    Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003. Detrital Zircon Analysis of the Sedimentary Record, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 277-303
    Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Gomes, A.C.B., Sardinha, A.S., Oliveira, D.C., Santos, R.D., Santos, P.A., 2012. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton:A-type or hydrated charnockitic granites? Lithos 151, 57-73. https://doi.org/10.1016/j.lithos.2012.02.020
    Figueiredo e Silva, R.C., Lobato, L.M., Rosière, C.A., Hagemann, S., Zucchetti, M., Baars, F.J., Morais, R., Andrade, I., 2008. A Hydrothermal Origin for the Jaspilite-Hosted, Giant Serra Norte Iron Ore Deposits in the Carajás Mineral Province, Pará State, Brazil, in:Hagemann, S., Rosière, C.A., Gutzmer, J., Beukes, N.J. (Eds.), Banded Iron Formation-Related High-Grade Iron Ore. Society of Economic Geologists, pp. 255-290. https://doi.org/10.5382/rev.15.10
    Feio, G.R.L., Dall'Agnol, R., Dantas, E.L., Macambira, M.J.B., Santos, J.O.S., Althoff, F.J., Soares, J.E.B., 2013. Archean granitoid magmatism in the Canaã dos Carajás area:Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Res. 227, 157-185. https://doi.org/10.1016/j.precamres.2012.04.007
    Flament, N., Coltice, N., Rey, P.F., 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326-336. https://doi.org/10.1016/j.epsl.2008.08.029
    Galarza, M.A., Macambira, M.J.B., Villas, R.N., 2008. Dating and isotopic characteristics (Pb and S) of the Fe oxide-Cu-Au-U-REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci. 25, 377-397. https://doi.org/10.1016/j.jsames.2007.07.006
    Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J., 2009. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Mar. Pet. Geol. 26, 525-535. https://doi.org/10.1016/j.marpetgeo.2009.01.003
    Gawthorpe, R.L., Leeder, M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Res. 12, 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
    Gehrels, G.E., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 42, 127-149. https://doi.org/10.1146/annurev-earth-050212-124012
    Gibbs, A.K., Wirth, K.R., Hirata, W.K., Olszewski Jr, W.J., 1986. Age and composition of the Grão Pará groups volcanics, Serra dos Carajás. Rev. Bras. Geociências 16, 201-211
    Grainger, C.J., Groves, D.I., Tallarico, F.H.B., Fletcher, I.R., 2008. Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil:Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 33, 451-489. https://doi.org/10.1016/j.oregeorev.2006.10.010
    Gumsley, A.P., Chamberlain, K.R., Bleeker, W., Soderlund, U., De Kock, M.O., Larsson, E.R., 2017. Timing and tempo of the Great Oxidation Event. Proc. Natl. Acad. Sci. 114, 1811-1816. https://doi.org/10.1073/pnas.1608824114
    Hagemann, S.G., Angerer, T., Duuring, P., Rosière, C.A., Figueiredo e Silva, R.C., Lobato, L., Hensler, A.S., Walde, D.H.G., 2016. BIF-hosted iron mineral system:A review. Ore Geol. Rev. 76, 317-359. https://doi.org/10.1016/j.oregeorev.2015.11.004
    Hietpas, J., Samson, S., Moecher, D., Chakraborty, S., 2011. Enhancing tectonic and provenance information from detrital zircon studies:assessing terrane-scale sampling and grain-scale characterization. J. Geol. Soc. London. 168, 309-318. https://doi.org/10.1144/0016-76492009-163
    Hill, R.I., 1991. Starting plumes and continental break-up. Earth Planet. Sci. Lett. 104, 398-416. https://doi.org/10.1016/0012-821X(91)90218-7
    Hirata, W.K., Rigon, J.C., Kadekaru, K., Cordeiro, A.A.C., Meirelles, E.M., 1982. Geologia regional da Província Mineral de Carajás, in:Anais Do Simpósio de Geologia Da Amazônia. Sociedade Brasileira de Geologia-Núcleo Norte, Belém, pp. 100-110 (in Portuguese).
    Hurley, P.M., De Almeida, F.F.M., Melcher, G.C., Cordani, U.G., Rand, J.R., Kawashita, K., Vandoros, P., Pinson, W.H., Fairbairn, H.W., 1967. Test of continental drift by comparison of radiometric ages. Science 157(3788), 495-500. https://doi.org/10.1126/science.157.3788.495
    Huyskens, M.H., Zink, S., Amelin, Y., 2016. Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology. Chem. Geol. 438, 25-35. https://doi.org/10.1016/j.chemgeo.2016.05.013
    Isley, A.E., Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid Earth 104, 15461-15477. https://doi.org/10.1029/1999jb900066
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Jasra, A., Stephens, D.A., Gallagher, K., Holmes, C.C., 2006. Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo. Math. Geol. 38, 269-300. https://doi.org/10.1007/s11004-005-9019-3
    Klein, C., Ladeira, E.A., 2002. Petrography and Geochemistry of the Least Altered Banded Iron-Formation of the Archean Carajas Formation, Northern Brazil. Econ. Geol. 97, 643-651. https://doi.org/10.2113/97.3.643
    Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G.E., Gerdes, A., Horstwood, M.S.A., Sircombe, K.N., Sylvester, P.J., Tiepolo, M., Whitehouse, M.J., Woodhead, J.D., 2013. U-Pb Detrital Zircon Analysis-Results of an Inter-laboratory Comparison. Geostand. Geoanalytical Res. 37, 243-259. https://doi.org/10.1111/j.1751-908X.2013.00245.x
    Košler, J., Sylvester, P.J., 2003. Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS, in:Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Mineralogical Society of America and Geochemical Society, Washington, DC, United States, pp. 243-275
    Krymsky, R.S., Macambira, M.J.B., Lafon, J.-M., Estumano, G.S., 2007. Uranium-lead dating method at the Pará-Iso isotope geology laboratory, UFPA, Belém-Brazil. Brazil. An. Acad. Bras. Cienc. 79, 115-128. https://doi.org/10.1590/S0001-37652007000100014
    Kumar, A., Parashuramulu, V., Shankar, R., Besse, J., 2017. Evidence for a Neoarchean LIP in the Singhbhum craton, eastern India:Implications to Vaalbara supercontinent. Precambrian Res. 292, 163-174. https://doi.org/10.1016/j.precamres.2017.01.018
    Kump, L.R., Barley, M.E., 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033-1036. https://doi.org/10.1038/nature06058
    Lacasse, C.M., Ganade, C.E., Mathieu, L., Teixeira, N.A., Lopes, L.B.L., Monteiro, C.F., 2020. Restoring original composition of hydrothermally altered Archean metavolcanic rocks of the Carajás Mineral Province (Brazil):Geodynamic implications for the transition from lid to mobile tectonics. Lithos 372-373, 105647. https://doi.org/10.1016/j.lithos.2020.105647
    Lawrence, R.L., Cox, R., Mapes, R.W., Coleman, D.S., 2011. Hydrodynamic fractionation of zircon age populations. Geol. Soc. Am. Bull. 123, 295-305. https://doi.org/10.1130/B30151.1
    Licht, A., Pullen, A., Kapp, P., Abell, J., Giesler, N., 2016. Eolian cannibalism:Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geol. Soc. Am. Bull. 128, 944-956. https://doi.org/10.1130/B31375.1
    Lindenmayer, Z.G., Laux, J.H., Teixeira, J.B.G., 2001. Concidarações sobre a origem das formações ferríferas da Formação Carajás, Serra dos Carajás. Rev. Bras. Geociências 31, 21-28 (in Portuguese). https://doi.org/10.25249/0375-7536.20013112128
    Ludwig, K.R., 2012. User's Manual for a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Cent. 75
    Ludwig, K.R., 1998. On the Treatment of Concordant Uranium-Lead Ages. Geochim. Cosmochim. Acta 62, 665-676. https://doi.org/10.1016/S0016-7037(98)00059-3
    Macambira, M.J.B., Lancelot, J.R., 1996. Time constraints for the formation of the Archean Rio Maria crust, southeastern Amazonian Craton, Brazil. Int. Geol. Rev. 38, 1134-1142. https://doi.org/10.1080/00206819709465386
    Macambira, M.J.B., Schrank, A., 2002. Químio-estratigrafia e evolução dos jaspilitos da Formação Carajás (PA). Rev. Bras. Geociências 32, 567-578 (in Portuguese). https://doi.org/10.25249/0375-7536.2002324567578
    Macambira, M.J.B., Vasquez, M.L., Silva, D.C.C., Galarza, M.A., Barros, C.E.M., Camelo, J.F., 2009. Crustal growth of the central-eastern Paleoproterozoic domain, SW Amazonian craton:Juvenile accretion vs. reworking. J. South Am. Earth Sci. 27, 235-246. https://doi.org/10.1016/j.jsames.2009.02.001
    Machado, N., Lindenmayer, Z., Krogh, T.E., Lindenmayer, D., 1991. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res. 49, 329-354. https://doi.org/10.1016/0301-9268(91)90040-H
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett. 141, 259-276. https://doi.org/10.1016/0012-821X(96)00054-4
    Mansur, E.T., Ferreira Filho, C.F., 2016. Magmatic structure and geochemistry of the Luanga Mafic-Ultramafic Complex:Further constraints for the PGE-mineralized magmatism in Carajás, Brazil. Lithos 266-267, 28-43. https://doi.org/10.1016/j.lithos.2016.09.036
    Markwitz, V., Kirkland, C.L., 2018. Source to sink zircon grain shape:Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance. Geosci. Front. 9, 431-439. https://doi.org/10.1016/j.gsf.2017.04.004
    Martins, P.L.G., Toledo, C.L.B., Silva, A.M., Chemale, F., Santos, J.O.S., Assis, L.M., 2017. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil:Petrography, geochemistry and tectonic significance of basalts from the Carajás Basin. Precambrian Res. 302, 340-357. https://doi.org/10.1016/j.precamres.2017.10.013
    Melo, G.H.C., Monteiro, L.V.S., Xavier, R.P., Moreto, C.P.N., Arquaz, R.M., Silva, M.A.D., 2019. Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil):Early syngenetic chalcopyrite overprinted by IOCG mineralization. Ore Geol. Rev. 111, 102993. https://doi.org/10.1016/j.oregeorev.2019.102993
    Melo, G.H.C., Monteiro, L.V.S., Xavier, R.P., Moreto, C.P.N., Santiago, E.S.B., Dufrane, S.A., Aires, B., Santos, A.F.F., 2017. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil):constraints from paragenesis of hydrothermal alteration and U-Pb geochronology. Miner. Depos. 52, 709-732. https://doi.org/10.1007/s00126-016-0693-5
    Milhomem Neto, J.M., Lafon, J.M., 2019. Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield. Geosci. Front. 10, 1477-1506. https://doi.org/10.1016/j.gsf.2018.09.012
    Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C., 2018. Evolution of Siderian juvenile crust to Rhyacian high Ba-Sr magmatism in the Mineiro Belt, southern São Francisco Craton. Geosci. Front. 9, 977-995. https://doi.org/10.1016/j.gsf.2018.01.009
    Moreto, C.P.N., Monteiro, L.V.S., Xavier, R.P., Creaser, R.A., DuFrane, S.A., Tassinari, C.C.G., Sato, K., Kemp, A.I.S., Amaral, W.S., 2015. Neoarchean and paleoproterozoic iron oxide-copper-gold events at the sossego deposit, Carajás Province, Brazil:Re-Os and U-Pb geochronological evidence. Econ. Geol. 110, 809-835. https://doi.org/10.2113/econgeo.110.3.809
    Motta, J.G., Souza Filho, C.R., Carranza, E.J.M., Braitenberg, C., 2019. Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data. Sci. Rep. 9, 2565. https://doi.org/10.1038/s41598-019-39171-9
    Najman, Y., 2006. The detrital record of orogenesis:A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Science Rev. 74, 1-72. https://doi.org/10.1016/j.earscirev.2005.04.004
    Olszewski, W.J., Wirth, K.R., Gibbs, A.K., Gaudette, H.E., 1989. The age, origin, and tectonics of the Grão Pará Group and associated rocks, Serra dos Carajás, Brazil:Archean continental volcanism and rifting. Precambrian Res. 42, 229-254. https://doi.org/10.1016/0301-9268(89)90013-2
    Parra-Avila, L.A., Baratoux, L., Eglinger, A., Fiorentini, M.L., Block, S., 2019. The Eburnean magmatic evolution across the Baoulé-Mossi domain:Geodynamic implications for the West African Craton. Precambrian Res. 332, 105392. https://doi.org/10.1016/j.precamres.2019.105392
    Pehrsson, S.J., Berman, R.G., Eglington, B., Rainbird, R., 2013. Two Neoarchean supercontinents revisited:The case for a Rae family of cratons. Precambrian Res. 232, 27-43. https://doi.org/10.1016/j.precamres.2013.02.005
    Peters, T.J., Valarelli, J.V., Coutinho, J.M.V., Sommerauer, J., von Raumer, J., 1977. The manganese deposits of Buritirama (Pará, Brazil). Schweizerische Mineral. und Petrogr. Mitteilungen-Bull. suisse minéralogie pétrographie 57, 313-327. https://doi.org/http://dx.doi.org/10.5169/seals-44438 Nutzungsbedingungen
    Pidgeon, R.T., MacAmbira, M.J.B., Lafon, J.M., 2000. Th-U-Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajas Province, Brazil:Evidence for the ages of granulite facies metamorphism and the protolith of the enderbite. Chem. Geol. 166, 159-171. https://doi.org/10.1016/S0009-2541(99)00190-4
    Pinheiro, R.V.L., Holdsworth, R.E., 1997. Reactivation of Archaean strike-slip fault systems, Amazon region, Brazil. J. Geol. Soc. London. 154, 99-103. https://doi.org/10.1144/gsjgs.154.1.0099
    Pons, M.L., Fujii, T., Rosing, M., Quitté, G., Télouk, P., Albarède, F., 2013. A Zn isotope perspective on the rise of continents. Geobiology 11, 201-214. https://doi.org/10.1111/gbi.12030
    Pullen, A., Ibanez-Mejia, M., Gehrels, G.E., Ibanez-Mejia, J.C., Pecha, M., 2014. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations. J. Anal. At. Spectrom. 29, 971-980. https://doi.org/10.1039/c4ja00024b
    Rasmussen, B., Bekker, A., Fletcher, I.R., 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173-180. https://doi.org/10.1016/j.epsl.2013.08.037
    Rego, E.S., Busigny, V., Lalonde, S.V., Philippot, P., Bouyon, A., Rossignol, C., Babinski, M., Zapparoli, A., 2021. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology, in press. https://doi.org/10.1111/gbi.12438
    Requia, K., Stein, H., Fontboté, L., Chiaradia, M., 2003. Re-Os and Pb-Pb geochronology of the Archean Salobo iron oxide copper-gold deposit, Carajás mineral province, northern Brazil. Miner. Depos. 38, 727-738. https://doi.org/10.1007/s00126-003-0364-1
    Rey, P.F., Coltice, N., 2008. Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology 36, 635-638. https://doi.org/10.1130/G25031A.1
    Ribeiro da Luz, B., Crowley, J.K., 2012. Morphological and chemical evidence of stromatolitic deposits in the 2.75Ga Carajás banded iron formation, Brazil. Earth Planet. Sci. Lett. 355-356, 60-72. https://doi.org/10.1016/j.epsl.2012.08.028
    Ronov, A.B., 1972. Evolution of Rock Composition and Geochemical Processes in the Sedimentary Shell of the Earth. Sedimentology 19, 157-172. https://doi.org/10.1111/j.1365-3091.1972.tb00019.x
    Ronze, P.C., Soares, A.D.V., Santos, M.G.S., Barreira, C.F., 2000. Alemao copper-gold (U-REE) deposits, Carajas, Brazil, in:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PCG Publishing, pp. 191-202.
    Rossignol, C., Bourquin, S., Poujol, M., Hallot, E., Dabard, M.-P., Nalpas, T., 2016. The volcaniclastic series from the Luang Prabang Basin, Laos:A witness of a triassic magmatic arc ? J. Asian Earth Sci. 120, 159-183. https://doi.org/10.1016/j.jseaes.2016.02.001
    Rossignol, C., Rego, E., Narduzzi, F., Teixeira, L., Avila, J.N., Silva, M.A.L., Lana, C., Philippot, P., 2020a. Stratigraphy and geochronological constraints of the Serra Sul Formation (Carajas Basin, Amazonian Craton, Brazil). Precambrian Res. 351, 105981. https://doi.org/10.1016/j.precamres.2020.105981
    Rossignol, C., Lana, C., Alkmim, F., 2020b. Geodynamic evolution of the Minas Basin, southern São Francisco Craton (Brazil), during the early Paleoproterozoic:Climate or tectonic? J. South Am. Earth Sci. 101, 102628. https://doi.org/10.1016/j.jsames.2020.102628
    Roverato, M., 2016. The Montesbelos mass-flow (southern Amazonian craton, Brazil):a Paleoproterozoic volcanic debris avalanche deposit? Bull. Volcanol. 78, 1-6. https://doi.org/10.1007/s00445-016-1043-2
    Rubatto, D., 2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 184, 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
    Salminen, J., Oliveira, E.P., Piispa, E.J., Smirnov, A.V., Trindade, R.I.F., 2019. Revisiting the paleomagnetism of the Neoarchean Uauá mafic dyke swarm, Brazil:Implications for Archean supercratons. Precambrian Res. 329, 108-123. https://doi.org/10.1016/j.precamres.2018.12.001
    Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., Fletcher, I.R., 2000. A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Res. 3, 453-488. https://doi.org/10.1016/S1342-937X(05)70755-3
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A.R., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanalytical Res. 41, 335-358. https://doi.org/10.1111/ggr.12167
    Sardinha, A.S., Barros, C.E.M., Krymsky, R., 2006. Geology, geochemistry, and U-Pb geochronology of the Archean (2.74 Ga) Serra do Rabo granite stocks, Carajás Metallogenetic Province, northern Brazil. J. South Am. Earth Sci. 20, 327-339. https://doi.org/10.1016/j.jsames.2005.11.001
    Schofield, D.I., Horstwood, M.S.A., Pitfield, P.E.J., Crowley, Q.G., Wilkinson, A.F., Sidaty, H.C.O., 2006. Timing and kinematics of Eburnean tectonics in the central Reguibat Shield, Mauritania. J. Geol. Soc. London. 163, 549-560. https://doi.org/10.1144/0016-764905-097
    Schröder, S., Bedorf, D., Beukes, N.J., Gutzmer, J., 2011. From BIF to red beds:Sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sediment. Geol. 236, 25-44. https://doi.org/10.1016/j.sedgeo.2010.11.007
    Shore, M., Fowler, A.D., 1996. Oscillatory zoning in minerals:a common phenomenon. Can. Mineral. 34, 1111-1126
    Siepierski, L., Ferreira Filho, C.F., 2020. Magmatic structure and petrology of the Vermelho Complex, Carajás Mineral Province, Brazil:Evidence for magmatic processes at the lower portion of a mafic-ultramafic intrusion. J. South Am. Earth Sci. 102, 102700. https://doi.org/10.1016/j.jsames.2020.102700
    Siepierski, L., Ferreira Filho, C.F., 2016. Spinifex-textured komatiites in the south border of the Carajas ridge, Selva Greenstone belt, Carajás Province, Brazil. J. South Am. Earth Sci. 66, 41-55. https://doi.org/10.1016/j.jsames.2015.12.011
    Silva, F.F.D., Oliveira, D.C.D., Antonio, P.Y.J., D'Agrella-Filho, M.S., Lamarao, C.N., 2016. Bimodal magmatism of the Tucumã area, Carajás province:U-Pb geochronology, classification and processes. J. South Am. Earth Sci. 72, 95-114. https://doi.org/10.1016/j.jsames.2016.07.016
    Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Souza, S.R.C., Botelho, N.F., Dantas, E.L., Jiménez, F.A.C., Reis, M.A., Viana, C.S., 2020. Geochemistry and isotopic geology of the Lagoa Seca gold deposit in the Andorinhas greenstone-belt, Carajás Province, Brazil. J. South Am. Earth Sci. 99, 102523. https://doi.org/10.1016/j.jsames.2020.102523
    Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581-589. https://doi.org/10.1016/j.gsf.2015.11.006
    Tallarico, F.H.B., Figueiredo, B.R., Groves, D.I., Kositcin, N., McNaughton, N.J., Fletcher, I.R., Rego, J.L., 2005. Geology and SHRIMP U-Pb geochronology of the Igarapé Bahia deposit, Carajás copper-gold belt, Brazil:An Archean (2.57 Ga) example of Iron-Oxide Cu-Au-(U-REE) mineralization. Econ. Geol. 100, 7-28. https://doi.org/10.2113/100.1.0007
    Tang, H., Chen, Y., 2013. Global glaciations and atmospheric change at ca. 2.3 Ga. Geosci. Front. 4, 583-596. https://doi.org/10.1016/j.gsf.2013.02.003
    Tassinari, C.C.G., Macambira, M.J.B., 1999. Geochronological provinces of the Amazonian Craton. Episodes 22, 174-182. https://doi.org/10.18814/epiiugs/1999/v22i3/004
    Tavares, F.M., Trouw, R.A.J., da Silva, C.M.G., Justo, A.P., Oliveira, J.K.M., 2018. The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil:Revealing complex structural patterns. J. South Am. Earth Sci. 88, 238-252. https://doi.org/10.1016/j.jsames.2018.08.024
    Teixeira, J.B.G., Eggler, D.H., 1994. Petrology, geochemistry, and tectonic setting of Archean basaltic and dioritic rocks from the N4 iron deposit, Serra dos Carajás, Pará, Brazil. Acta Geol. Leopoldensia 17, 71-114
    Teixeira, W., Figueiredo, M.C.H., 1991. An outline of Early Proterozoic crustal evolution in the São Francisco craton, Brazil:a review. Precambrian Res. 53, 1-22. https://doi.org/10.1016/0301-9268(91)90003-S
    Teixeira, W., Hamilton, M.A., Girardi, V.A.V., Faleiros, F.M., Ernst, R.E., 2019. U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (Carajás/Rio Maria and Rio Apa areas):Tectonic implications for events at 1880, 1110 Ma, 535 Ma and 200 Ma. Precambrian Res. 329, 138-155. https://doi.org/10.1016/j.precamres.2018.02.008
    Tolbert, G.E., Tremaine, J.W., Melcher, G.C., Gomes, C.B., 1971. The Recently Discovered Serra dos Carajás Iron Deposits, northern Brazil. Econ. Geol. 66, 985-994. https://doi.org/https://doi.org/10.2113/gsecongeo.66.7.985
    Toledo, P.I.F., Moreto, C.P.N., Xavier, R.P., Gao, J.F., de Matos, J.H.S.N., de Melo, G.H.C., 2019. Multistage evolution of the Neoarchean (ca. 2.7 Ga) Igarapé cinzento (GT-46) iron oxide copper-gold deposit, Cinzento shear zone, Carajás Province, Brazil. Econ. Geol. 114, 1-34. https://doi.org/10.5382/econgeo.2019.4617
    Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphic record, in:Altermann, W., Corcoran, P.L. (Eds.), Special Publication of the International Association of Sedimentologists. International Association of Sedimentologists Special Publication, pp. 33-66.
    Trendall, A.F., Basei, M.A.S., De Laeter, J.R., Nelson, D.R., 1998. SHRIMP zircon U-Pb constraints on the age of the Carajas formation, Grao Para Group, Amazon Craton. J. South Am. Earth Sci. 11, 265-277. https://doi.org/10.1016/S0895-9811(98)00015-7
    Trunfull, E.F., Hagemann, S., Xavier, R.P., Moreto, C.P.N., 2020. Critical assessment of geochronological data from the Carajás Mineral Province, Brazil:implications for metallogeny and tectonic evolution. Ore Geol. Rev. 103556. https://doi.org/10.1016/j.oregeorev.2020.103556
    Turner, S., Rushmer, T., Reagan, M., Moyen, J.-F., 2014. Heading down early on? Start of subduction on earth. Geology 42, 139-142. https://doi.org/10.1130/G34886.1
    Vasquez, M.L., Rosa-Costa, L.T., 2008. Geologia e recursos minerais do estado do Pará:texto explicativo. CPRM-Serviço Geol. do Bras. 328 (in Portuguese)
    Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chem. Geol. 312-313, 190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    Villas, R.N., Santos, M.D., 2001. Gold deposits of the Carajás mineral province:Deposit types and metallogenesis. Miner. Depos. 36, 300-331. https://doi.org/10.1007/s001260100178
    Vlaar, N.J., 2000. Continental emergence and growth on a cooling Earth. Tectonophysics 322, 191-202. https://doi.org/10.1016/S0040-1951(00)00063-9
    von Quadt, A., Gallhofer, D., Guillong, M., Peytcheva, I., Waelle, M., Sakata, S., 2014. U-Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques:Impact for their geological interpretation. J. Anal. At. Spectrom. 29, 1618-1629. https://doi.org/10.1039/C4JA00102H
    Windley, B.F., Kusky, T., Polat, A., 2021. Onset of plate tectonics by the Eoarchean. Precambrian Res. 352, 105980. https://doi.org/10.1016/j.precamres.2020.105980
    Wirth, K.R., Gibbs, A.K., Olszewski, W.J., 1986. U-Pb ages of zircons from the Grão-Pará Group and Serra dos Carajás Granites, Pará, Brazil. Rev. Bras. Geociências 16, 195-200
    Young, G.M., 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci. Front. 4, 247-261. https://doi.org/10.1016/j.gsf.2012.07.003
    Vasquez, M.L., Sousa, C.S., Carvalho, J.M.A., 2008. Mapa Geológico do Estado do Pará. Scale 11,000,000 (in Portuguese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (49) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint