Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Alice Bosco-Santos, William Patrick Gilhooly III, Paola de Melo-Silva, Fotios Fouskas, Amaury Bouyon, João Gabriel Motta, Mauricio Rigoni Baldim, Wendell Fabricio-Silva, Pascal Philippot, Elson Paiva Oliveira. Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101250. doi: 10.1016/j.gsf.2021.101250
Citation: Alice Bosco-Santos, William Patrick Gilhooly III, Paola de Melo-Silva, Fotios Fouskas, Amaury Bouyon, João Gabriel Motta, Mauricio Rigoni Baldim, Wendell Fabricio-Silva, Pascal Philippot, Elson Paiva Oliveira. Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101250. doi: 10.1016/j.gsf.2021.101250

Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton

doi: 10.1016/j.gsf.2021.101250
Funds:

We thank Sã

o Paulo Research Foundation (FAPESP grants 2016/02933-2 to ABS, 12/15824-6 to EPO and 2015/16235-2 to PP) and the Agouron Institute (to WPG) for financial support. We also thank Jaguar Mining Co for technical and logistic support. Special thanks to Armando José

a Grande mine. Thank you to Brooke Vander Pas (IUPUI) and Eric Haitt (University of Wisconsin-Oshkosh) for preparing the thin sections. We appreciate helpful comments and discussions with Wil Leavitt and Mariana Brando Soares that helped improve our interpretations. Comments and detailed revisions from Nivea Magalhã

Massucatto and Romulo Thiago Cruz for their assistance at Roç

es and an anonymous reviewer significantly improved the manuscript.

  • Received Date: 2020-09-16
  • Accepted Date: 2021-06-04
  • Rev Recd Date: 2021-05-14
  • Publish Date: 2021-06-07
  • Sulfur mass-independent fractionation (S-MIF) preserved in Archean sedimentary pyrite is interpreted to reflect atmospheric chemistry. Small ranges in Δ33S that expanded into larger fractionations leading up to the Great Oxygenation Event (GOE; 2.45-2.2 Ga) are disproportionately represented by sequences from the Kaapvaal and Pilbara Cratons. These patterns of S-MIF attenuation and enhancement may differ from the timing and magnitude of minor sulfur isotope fractionations reported from other cratons, thus obscuring local for global sulfur cycling dynamics. By expanding the Δ33S record to include the relatively underrepresented São Francisco Craton in Brazil, we suggest that marine biogeochemistry affected S-MIF preservation prior to the GOE. In an early Neoarchean sequence (2763-2730 Ma) from the Rio das Velhas Greenstone Belt, we propose that low δ13Corg (<-30‰) and dampened Δ33S (0.4‰ to -0.7‰) in banded iron formation reflect the marine diagenetic process of anaerobic methane oxidation. The overlying black shale (TOC up to 7.8%) with higher δ13Corg (-33.4‰ to -19.2‰) and expanded Δ33S (2.3‰ ±0.8‰), recorded oxidative sulfur cycling that resulted in enhance preservation of S-MIF input from atmospheric sources of elemental sulfur. The sequence culminates in a metasandstone, where concomitant changes to more uniform δ13Corg (-30‰ to -25‰), potentially associated with the RuBisCO I enzyme, and near-zero Δ33S (-0.04‰ to 0.38‰) is mainly interpreted as evidence for local oxygen production. When placed in the context of other sequences worldwide, the Rio das Velhas helps differentiate the influences of global atmospheric chemistry and local marine diagenesis in Archean biogeochemical processes. Our data suggest that prokaryotic sulfur, iron, and methane cycles might have an underestimated role in pre-GOE sulfur minor isotope records.
  • loading
  • [1]
    Ague, J.J., Van Haren, J.L., 1996. Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Econ. Geol. 91, 1169-1182
    [2]
    Alkmim, F.F., Marshak, S., 1998. Transamazonian orogeny in the Southern Sao Francisco craton region, Minas Gerais, Brazil:evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrıfero. Precambrian Res. 90, 29-58
    [3]
    Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J., 2007. A whiff of oxygen before the great oxidation event? Science 317, 1903-1906
    [4]
    Antler, G., Turchyn, A.V., Herut, B., Sivan, O., 2015. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane. Geology 43, 619-622
    [5]
    Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., Wallis, S., 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. J. Metamorph. Geol 28, 895-914
    [6]
    Araújo, J.C.S., Ferreira, R., Freitas, F., Magalhães, J., 2020a. The Archean Rio das Velhas greenstone belt revisited:new insights into the stratigraphy. J. Geol. Surv. Brazil 3, 113-149
    [7]
    Araújo, J.C.S., Lobato, L.M., 2019. Depositional model for banded iron formation host to gold in the Archean Rio das Velhas greenstone belt, Brazil, based on geochemistry and LA-ICP-MS magnetite analyses. J. South Am. Earth Sci. 94, 102205. 102210.101016/j.jsames.102019.102205.102021.
    [8]
    Araújo, J.C.S., Ribeiro, J.H., Tuller, M.P., Signorelli, N., 2020b. Carta geológica e de recursos minerais da folha Gandarela (SE. 23-XA-III-2-NO):Quadrilátero Ferrífero (in Portuguese).
    [9]
    Baltazar, O., Silva, S., 1996. Projeto Rio das Velhas:Mapa Geológico Integrado do Supergrupo Rio das Velhas, escala 1:100.000. Braz. Geol. Surv.-CPRM (in Portuguese).
    [10]
    Baltazar, O., Baars, F., Lobato, L., Reis, L., Achtschin, A., Berni, G., Silveira, V., 2005. Mapa geológico do Quadrilátero Ferrífero na escala 1:50.000 com nota explicativa. CODEMIG (in Portuguese)
    [11]
    Baltazar, O., Zucchetti, M., 2007. Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil:A review of the setting of gold deposits. Ore Geol. Rev. 32, 471-499
    [12]
    Bekker, A., Holland, H., Wang, P.-L., Rumble, D., Stein, H., Hannah, J., Coetzee, L., Beukes, N., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117-120
    [13]
    Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O., Rouxel, O.J., 2010. Iron formation:the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467-508
    [14]
    Beny-Bassez, C., Rouzaud, J., 1984. Characterization of Carbonaceous Materials by Correlated Electron and Optical Microscopy and Raman Microspectroscopy. Scan. Electron Microsc. 1985, 11
    [15]
    Beyssac, O., Goffé, B., Chopin, C., Rouzaud, J., 2002. Raman spectra of carbonaceous material in metasediments:a new geothermometer. J. Metamorph. Geol. 20, 859-871
    [16]
    Bleeker, W., 2003. The late Archean record:a puzzle in ca. 35 pieces. Lithos 71, 99-134
    [17]
    Bosco-Santos, A., Gilhooly III, W.P., Fouskas, F., Fabricio-Silva, W., Oliveira, E.P., 2020. Euxinia in the Neoarchean:The starting point for early oxygenation in a Brazilian Craton. Precambrian Res. 341, 105655. 105610.101016/j.precamres.102020.105655.
    [18]
    Brando Soares, M., Neto, A.V.C., Fabricio-Silva, W., 2020. The development of a Meso-to Neoarchean rifting-convergence-collision-collapse cycle over an ancient thickened protocontinent in the south São Francisco craton, Brazil. Gondwana Res. 77, 40-66
    [19]
    Brando Soares, M.N., Atlas Vasconcelos Corrêa, Zeh, A., Cabral, A.R., Pereira, L.F., do Prado, M.G.B., de Almeida, A.M., Manduca, L.G., da Silva, P.H.M., de Araújo Mabub, R.O., 2017. Geology of the Pitangui greenstone belt, Minas Gerais, Brazil:stratigraphy, geochronology and BIF geochemistry. Precambrian Res. 291, 17-41
    [20]
    Bucher, K., Grapes, R., 2011. Petrogenesis of metamorphic rocks. Springer Science & Business Media
    [21]
    Bühn, B., Santos, R.V., Dardenne, M.A., de Oliveira, C.G., 2012. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem. Geol. 312, 163-176
    [22]
    Buseck, P.R., Beyssac, O., 2014. From organic matter to graphite:Graphitization. Elements 10, 421-426
    [23]
    Canfield, D.E., Habicht, K.S., Thamdrup, B., 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658-661
    [24]
    Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155
    [25]
    Canfield, D.E., Zhang, S., Wang, H., Wang, X., Zhao, W., Su, J., Bjerrum, C.J., Haxen, E.R., Hammarlund, E.U., 2018. A Mesoproterozoic iron formation. Proc. Natl. Acad. Sci. U.S.A. 115, E3895-E3904
    [26]
    Caruso, S., Fiorentini, M.L., Hollis, S.P., LaFlamme, C., Baumgartner, R.J., Steadman, J.A., Savard, D., 2018. The fluid evolution of the Nimbus Ag-Zn-(Au) deposit:An interplay between mantle plume and microbial activity. Precambrian Res. 317, 211-229
    [27]
    Chang, S.-B.R., Kirschvink, J.L., 1985. Possible biogenic magnetite fossils from the Late Miocene Potamida clays of Crete. In:Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Organisms. Topics in Geobiology, vol 5. Springer, Boston, MA, pp. 647-669. 10.1007/978-1-4613-0313-8_36.
    [28]
    Chen, M., Campbell, I.H., Xue, Y., Tian, W., Ireland, T.R., Holden, P., Cas, R.A., Hayman, P.C., Das, R., 2015. Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic Bore Volcanic Complex, Yilgarn Craton, Western Australia. Econ. Geol. 110, 1411-1423
    [29]
    Cheney, E., 1996. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res. 79, 3-24
    [30]
    Claire, M.W., Kasting, J.F., Domagal-Goldman, S.D., Stüeken, E.E., Buick, R., Meadows, V.S., 2014. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141, 365-380
    [31]
    Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol. Oceanogr. 14, 454-458
    [32]
    Cox, J., Pressacco, R., 2016. Technical Report on the Roça Grande and Pilar Mines, Minas Gerais State, Brazil. Jaguar Mining Company
    [33]
    Crowe, S.A., Døssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., Canfield, D.E., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535-538
    [34]
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10, 1765-1787
    [35]
    da Silva, L.C., Noce, C.M., Lobato, L.M., 2017. Dacitic volcanism in the course of the Rio Das Velhas (2800-2690 Ma) Orogeny:A Brazilian Archean Analogue (TTD) to the modern adakites. Brazilian J. Geol. 30, 384-387
    [36]
    de Kock, M.O., Evans, D.A., Beukes, N.J., 2009. Validating the existence of Vaalbara in the Neoarchean. Precambrian Res. 174, 145-154
    [37]
    DeWitt, H.L., Hasenkopf, C.A., Trainer, M.G., Farmer, D.K., Jimenez, J.L., McKay, C.P., Toon, O.B., Tolbert, M.A., 2010. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions:implications for early earth. Astrobiology 10, 773-781
    [38]
    Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P., Gonfiantini, R., Krouse, R., 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65, 2433-2437
    [39]
    Domagal-Goldman, S.D., Kasting, J.F., Johnston, D.T., Farquhar, J., 2008. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29-40
    [40]
    Dopico, C.I.M., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161
    [41]
    Fabre, S., Nédélec, A., Poitrasson, F., Strauss, H., Thomazo, C., Nogueira, A., 2011. Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil):Implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem. Geol. 289, 124-139
    [42]
    Fakhraee, M., Crowe, S.A., Katsev, S., 2018. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4, e1701835. 1701810.1701126/sciadv.1701835.
    [43]
    Farina, F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium-and high-K granitoids:Clues from the Southern São Francisco Craton (Brazil). Precambrian Res. 266, 375-394
    [44]
    Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756-758
    [45]
    Farquhar, J., Cliff, J., Zerkle, A.L., Kamyshny, A., Poulton, S.W., Claire, M., Adams, D., Harms, B., 2013. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl. Acad. Sci. U.S.A. 110, 17638-17643
    [46]
    Farquhar, J., Peters, M., Johnston, D.T., Strauss, H., Masterson, A., Wiechert, U., Kaufman, A.J., 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706-709
    [47]
    Farquhar, J., Savarino, J., Airieau, S., Thiemens, M.H., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis:Implications for the early atmosphere. J. Geophys. Res. Planets 106, 32829-32839
    [48]
    Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1-13
    [49]
    Ferry, J.M., 1981. Petrology of graphitic sulfide-rich schists from south-central Maine:an example of desulfidation during prograde regional metamorphism. Am. Mineral. 66, 908-930
    [50]
    Fiorentini, M.L., Bekker, A., Rouxel, O., Wing, B.A., Maier, W., Rumble, D., 2012. Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from eastern Botswana. Econ. Geol. 107, 105-116
    [51]
    Fiorentini, M.L., LaFlamme, C., Denyszyn, S., Mole, D., Maas, R., Locmelis, M., Caruso, S., Bui, T.-H., 2018. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochim. Cosmochim. Acta 223, 175-197
    [52]
    Fischer, W.W., Fike, D.A., Johnson, J.E., Raub, T.D., Guan, Y., Kirschvink, J.L., Eiler, J.M., 2014. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl. Acad. Sci. U.S.A. 111, 5468-5473
    [53]
    Floyd, P., Leveridge, B., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall:framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 144, 531-542
    [54]
    Grant, J.A., 1986. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration. Econ. Geol. 81, 1976-1982
    [55]
    Gregory, D.D., Large, R.R., Bath, A.B., Steadman, J.A., Wu, S., Danyushevsky, L., Bull, S.W., Holden, P., Ireland, T.R., 2016. Trace element content of pyrite from the kapai slate, St. Ives Gold District, Western Australia. Econ. Geol. 111, 1297-1320
    [56]
    Gregory, D.D., Large, R.R., Halpin, J.A., Steadman, J.A., Hickman, A.H., Ireland, T.R., Holden, P., 2015. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses. Geochim. Cosmochim. Acta 149, 223-250
    [57]
    Gumsley, A.P., Chamberlain, K.R., Bleeker, W., Söderlund, U., de Kock, M.O., Larsson, E.R., Bekker, A., 2017. Timing and tempo of the Great Oxidation Event. Proc. Natl. Acad. Sci. U.S.A. 114, 1811-1816
    [58]
    Guo, Q., Strauss, H., Kaufman, A.J., Schröder, S., Gutzmer, J., Wing, B., Baker, M.A., Bekker, A., Jin, Q., Kim, S.-T., 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology 37, 399-402
    [59]
    Guy, B., Ono, S., Gutzmer, J., Kaufman, A., Lin, Y., Fogel, M., Beukes, N., 2012. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Res. 216, 208-231
    [60]
    Guy, B., Ono, S., Gutzmer, J., Lin, Y., Beukes, N., 2014. Sulfur sources of sedimentary "buckshot" pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Miner. Depos. 49, 751-775
    [61]
    Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., 2002. Calibration of sulfate levels in the Archean ocean. Science 298, 2372-2374
    [62]
    Halevy, I., 2013. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl. Acad. Sci. U.S.A. 110, 17644-17649
    [63]
    Halevy, I., Johnston, D.T., Schrag, D.P., 2010. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204-207
    [64]
    Hauri, E.H., Papineau, D., Wang, J., Hillion, F., 2016. High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem. Geol. 420, 148-161
    [65]
    Havig, J.R., Hamilton, T.L., Bachan, A., Kump, L.R., 2017. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth-Sci. Rev. 174, 1-21
    [66]
    Heilbron, M., Cordani, U.G., Alkmim, F.F., 2017. The São Francisco craton and its margins, São Francisco Craton, Eastern Brazil. Springer, pp. 3-13
    [67]
    Henry, D.G., Jarvis, I., Gillmore, G., Stephenson, M., 2019. Raman spectroscopy as a tool to determine the thermal maturity of organic matter:Application to sedimentary, metamorphic and structural geology. Earth-Sci. Rev. 198, 102936. 102910.101016/j.earscirev.102019.102936.
    [68]
    Hinrichs, K.U., 2002. Microbial fixation of methane carbon at 2.7 Ga:Was an anaerobic mechanism possible? Geochem. Geophy. Geosy. 3, 1-10
    [69]
    Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., Master, S., 2009. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks:A new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436-445
    [70]
    Holland, H.D., 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811-3826
    [71]
    Hood, S.B., Cracknell, M.J., Gazley, M.F., Reading, A.M., 2019. Element mobility and spatial zonation associated with the Archean Hamlet orogenic Au deposit, Western Australia:Implications for fluid pathways in shear zones. Chem. Geol. 514, 10-26
    [72]
    Hou, K., Li, Y., Wan, D., 2007. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaoning Province, China. Sci. China Earth Sci. 50, 1471-1478
    [73]
    Hu, G., Rumble, D., Wang, P.-L., 2003. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta 67, 3101-3118
    [74]
    Izon, G., Zerkle, A.L., Zhelezinskaia, I., Farquhar, J., Newton, R.J., Poulton, S.W., Eigenbrode, J.L., Claire, M.W., 2015. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264-273
    [75]
    Jamieson, J.W., Wing, B.A., Hannington, M.D., Farquhar, J., 2006. Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits:case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ. Geol. 101, 1055-1061
    [76]
    Jehlička, J., Beny, C., 1999. First and second-order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks. J. Mol. Struct. 480, 541-545
    [77]
    Johnson, C.M., Beard, B.L., Klein, C., Beukes, N.J., Roden, E.E., 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151-169
    [78]
    Johnson, C.M., Ludois, J.M., Beard, B.L., Beukes, N.J., Heimann, A., 2013. Iron formation carbonates:Paleoceanographic proxy or recorder of microbial diagenesis? Geology 41, 1147-1150
    [79]
    Johnston, D.T., 2011. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Sci. Rev. 106, 161-183
    [80]
    Johnston, D.T., Poulton, S.W., Dehler, C., Porter, S., Husson, J., Canfield, D.E., Knoll, A.H., 2010. An emerging picture of Neoproterozoic ocean chemistry:Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64-73
    [81]
    Kamber, B., Whitehouse, M., 2007. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5, 5-17
    [82]
    Kaufman, A.J., Johnston, D.T., Farquhar, J., Masterson, A.L., Lyons, T.W., Bates, S., Anbar, A.D., Arnold, G.L., Garvin, J., Buick, R., 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900-1903
    [83]
    Köhler, I., Konhauser, K.O., Papineau, D., Bekker, A., Kappler, A., 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4, 1-7
    [84]
    Konhauser, K., Newman, D., Kappler, A., 2005. The potential significance of microbial Fe (III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167-177
    [85]
    Kresse, C., Lobato, L.M., Hagemann, S.G., e Silva, R.C.F., 2018. Sulfur isotope and metal variations in sulfides in the BIF-hosted orogenic Cuiabá gold deposit, Brazil:implications for the hydrothermal fluid evolution. Ore Geol. Rev. 98, 1-27
    [86]
    Kurzweil, F., Claire, M., Thomazo, C., Peters, M., Hannington, M., Strauss, H., 2013. Atmospheric sulfur rearrangement 2.7 billion years ago:Evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366, 17-26
    [87]
    Labidi, J., Cartigny, P., Moreira, M., 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208-211
    [88]
    LaFlamme, C., Jamieson, J.W., Fiorentini, M.L., Thébaud, N., Caruso, S., Selvaraja, V., 2018. Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton. Gondwana Res. 58, 27-38
    [89]
    Lalonde, S.V., Konhauser, K.O., 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 112, 995-1000
    [90]
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr, H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 231, 157-173
    [91]
    Lebrun, E., Thébaud, N., Miller, J., Roberts, M., Evans, N., 2017. Mineralisation footprints and regional timing of the world-class Siguiri orogenic gold district (Guinea, West Africa). Miner. Depos. 52, 539-564
    [92]
    Lepot, K., Williford, K.H., Philippot, P., Thomazo, C., Ushikubo, T., Kitajima, K., Mostefaoui, S., Valley, J.W., 2019. Extreme 13C-depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522-547
    [93]
    Li, J., Zhang, Z., Stern, R.A., Hannah, J.L., Stein, H.J., Yang, G., Li, L., 2017. Primary multiple sulfur isotopic compositions of pyrite in 2.7 Ga shales from the Joy Lake sequence (Superior Province) show felsic volcanic array-like signature. Geochim. Cosmochim. Acta 202, 310-340
    [94]
    Liu, J., Pellerin, A., Antler, G., Kasten, S., Findlay, A.J., Dohrmann, I., Røy, H., Turchyn, A.V., Jørgensen, B.B., 2020a. Early diagenesis of iron and sulfur in Bornholm Basin sediments:The role of near-surface pyrite formation. Geochim. Cosmochim. Acta 284, 43-60
    [95]
    Liu, J., Pellerin, A., Izon, G., Wang, J., Antler, G., Liang, J., Su, P., Jørgensen, B.B., Ono, S., 2020b. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron. Earth Planet. Sci. Lett. 536, 116165. 116110.111016/j.epsl.112020.116165.
    [96]
    Liu, L., Ireland, T., Holden, P., 2020. In-situ quadruple sulfur isotopic compositions of pyrites in the ca. 3.2-2.72 Ga metasedimentary rocks from the Pilbara Craton, Western Australia. Chem. Geol. 557, 119837. 119810.111016/j.chemgeo.112020.119837.
    [97]
    Lobato, L.M., Ribeiro-Rodrigues, L.C., Vieira, F.W.R., 2001. Brazil's premier gold province. Part II:geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Depos. 36, 249-277
    [98]
    Lobato, L.M., Vieira, F.W.R., Ribeiro-Rodrigues, L., Pereira, L., Menezes, M., Junqueira, P., Pereira, S., 1998. Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part II, the Archean mesothermal gold-bearing hydrothermal system. Brazilian J. Geol. 28, 355-366
    [99]
    Ludwig, K., 2012. User's Manual for Isoplot Version 3.75-4.15:A Geochronological Toolkit for Microsoft Excel. 5. Berkley Geochronological Centre, Special Publication.
    [100]
    Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S., Summons, R.E., 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134. 1600110.1601126/sciadv.1600134.
    [101]
    Machado, N., Carneiro, M., 1992. U-Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can. J. Earth Sci. 29, 2341-2346
    [102]
    Machado, N., Noce, C., Ladeira, E., De Oliveira, O.B., 1992. U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco craton, Brazil. Geol. Soc. Am. Bull. 104, 1221-1227
    [103]
    Machado, N., Noce, C., Oliveira, O.d., Ladeira, E., 1989. Evolução geológica do Quadrilátero Ferrífero no Arqueano e Proterozóico Inferior, com base em geocronologia U-Pb. Simpósio de Geologia de Minas Gerais 5, 1-5 (in Portuguese).
    [104]
    Machado, N., Schrank, A., Noce, C., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett. 141, 259-276
    [105]
    Magaldi, T.T., Navarro, M.S., Enzweiler, J., 2019. Assessment of dissolution of silicate rock reference materials with ammonium bifluoride and nitric acid in a microwave oven. Geostand. Geoanal. Res. 43, 189-208
    [106]
    Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., Philippot, P., 2018. Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. Geobiology 16, 121-138
    [107]
    Marinho, M., Silva, M., Lombello, J., Di Salvio, L., Silva, R., Féboli, W., Brito, D., 2018. Mapa Geológico Integrado do Sinclinório Pitangui. Projeto ARIM-Áreas de Relevante Interesse Mineral-Noroeste do Quadrilátero Ferrífero (in Portuguese)
    [108]
    Melo-Silva, P., da Silva Amaral, W., Oliveira, E.P., 2020. Geochronological evolution of the Pitangui greenstone belt, southern São Francisco Craton, Brazil:Constraints from U-Pb zircon age, geochemistry and field relationships. J. South Am. Earth Sci. 99, 102380. 102310.101016/j.jsames.102019.102380.
    [109]
    Mishima, K., Yamazaki, R., Satish-Kumar, M., Ueno, Y., Hokada, T., Toyoshima, T., 2017. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India:Late Archean record of changing atmospheric chemistry. Earth Planet. Sci. Lett. 464, 69-83
    [110]
    Moreira, H., Lana, C., Nalini Jr, H.A., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Res. 275, 84-99
    [111]
    Moreira, H., Cassino, L., Lana, C., Storey, C., Albert, Capucine., 2019. Insights into orogenic process from drab schists and minor intrusions:Southern São Francisco Craton, Brazil. Lithos 346-347, 105146. 10.1016/j.lithos.2019.07.013
    [112]
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., 2016. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere. Proc. Natl. Acad. Sci. U.S.A. 113, 7432-7437
    [113]
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., Assayag, N., Marin-Carbonne, J., Mohan, M.R., Sarma, D.S., 2017. Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Res. 295, 38-47
    [114]
    Navarro, M., Tonetto, E., Oliveira, E., 2015. LA-SF-ICP-MS U-Pb Zircon Dating at University of Campinas, Brazil. Geonalysis-2015, Wien, August.
    [115]
    Navarro, M., Tonetto, E., Oliveira, E., 2017. Peixe zircon:new Brazilian reference material for U-Pb geochronology by LA-SF-ICP-MS. Goldschmidt Conference, https://goldschmidtabstracts.info/2017/3815.pdf.
    [116]
    Noce, C.M., Zuccheti, M., Baltazar, O., Armstrong, R., Dantas, E., Renger, F.E., Lobato, L., 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil):U-Pb zircon dating of volcaniclastic graywackes. Precambrian Res. 141, 67-82
    [117]
    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S.R., Taylor, B.E., 2006. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908-911
    [118]
    Oliver, N.H., Thomson, B., Freitas-Silva, F.H., Holcombe, R.J., Rusk, B., Almeida, B.S., Faure, K., Davidson, G.R., Esper, E.L., Guimarães, P.J., 2015. Local and regional mass transfer during thrusting, veining, and boudinage in the genesis of the giant shale-hosted Paracatu gold deposit, Minas Gerais, Brazil. Econ. Geol. 110, 1803-1834
    [119]
    Olson, S.L., Kump, L.R., Kasting, J.F., 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35-43
    [120]
    Ono, S., 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in earth's atmosphere. Annu. Rev. Earth Pl. Sci. 45, 301-329
    [121]
    Ono, S., Beukes, N.J., Rumble, D., 2009a. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 169, 48-57
    [122]
    Ono, S., Beukes, N.J., Rumble, D., Fogel, M.L., 2006a. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S. Afr. J. Geol. 109, 97-108.
    [123]
    Ono, S., Eigenbrode, J.L., Pavlov, A.A., Kharecha, P., Rumble III, D., Kasting, J.F., Freeman, K.H., 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15-30
    [124]
    Ono, S., Kaufman, A.J., Farquhar, J., Sumner, D.Y., Beukes, N.J., 2009b. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res. 169, 58-67
    [125]
    Ono, S., Wing, B., Johnston, D., Farquhar, J., Rumble, D., 2006b. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238-2252
    [126]
    Papineau, D., Mojzsis, S.J., Schmitt, A.K., 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188-212
    [127]
    Partin, C., Bekker, A., Planavsky, N., Lyons, T., 2015. Euxinic conditions recorded in the ca. 1.93 Ga Bravo Lake Formation, Nunavut (Canada):Implications for oceanic redox evolution. Chem. Geol. 417, 148-162
    [128]
    Partridge, M.A., Golding, S.D., Baublys, K.A., Young, E., 2008. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41-49
    [129]
    Pavlov, A., Kasting, J., 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27-41
    [130]
    Petrus, J.A., Kamber, B.S., 2012. VizualAge:A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247-270
    [131]
    Philippot, P., Ávila, J.N., Killingsworth, B.A., Tessalina, S., Baton, F., Caquineau, T., Muller, E., Pecoits, E., Cartigny, P., Lalonde, S.V., 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 1-10
    [132]
    Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., Van Kranendonk, M.J., 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534-1537
    [133]
    Philippot, P., Van Zuilen, M., Rollion-Bard, C., 2012. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 5, 668-674
    [134]
    Planavsky, N., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T.W., 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited:new perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 74, 6387-6405
    [135]
    Planavsky, N.J., Robbins, L.J., Kamber, B.S., Schoenberg, R., 2020. Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus 10, 20190140. 20190110.20191098/rsfs.20192019.20190140.
    [136]
    Poulton, S., Raiswell, R., 2002. The low-temperature geochemical cycle of iron:from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774-805
    [137]
    Poulton, S.W., Canfield, D.E., 2005. Development of a sequential extraction procedure for iron:implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209-221
    [138]
    Poulton, S.W., Canfield, D.E., 2011. Ferruginous conditions:a dominant feature of the ocean through Earth's history. Elements 7, 107-112
    [139]
    Praharaj, T., Fortin, D., 2004. Determination of acid volatile sulfides and chromium reducible sulfides in Cu-Zn and Au mine tailings. Water Air Soil Pollut. 155, 35-50
    [140]
    Rahl, J.M., Anderson, K.M., Brandon, M.T., Fassoulas, C., 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks:Calibration and application to tectonic exhumation in Crete, Greece. Earth Planet. Sci. Lett. 240, 339-354
    [141]
    Raiswell, R., Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219-245
    [142]
    Rantitsch, G., Grogger, W., Teichert, C., Ebner, F., Hofer, C., Maurer, E.-M., Schaffer, B., Toth, M., 2004. Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. Int. J. Earth Sci. 93, 959-973
    [143]
    Reinhard, C.T., Lalonde, S.V., Lyons, T.W., 2013. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44-55
    [144]
    Reinhard, C.T., Raiswell, R., Scott, C., Anbar, A.D., Lyons, T.W., 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713-716
    [145]
    Renger, F.E., Noce, C.M., Romano, A.W., Machado, N., 1994. Evolução sedimentar do Supergrupo Minas:500 Ma. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos, 10.18285/geonomos.v18282i18281.18227 (in Portuguese).
    [146]
    Reuschel, M., Melezhik, V., Strauss, H., 2012. Sulfur isotopic trends and iron speciation from the c. 2.0 Ga Pilgujärvi Sedimentary Formation, NW Russia. Precambrian Res. 196, 193-203
    [147]
    Ribeiro, Y., e Silva, R.C.F., Lobato, L.M., Lima, L.C., Rios, F.J., Hagemann, S.G., Cliff, J., 2015. Fluid inclusion and sulfur and oxygen isotope studies on quartz-carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 67, 11-33
    [148]
    Ribeiro-Rodrigues, L.C., de Oliveira, C.G., Friedrich, G., 2007. The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 32, 543-570
    [149]
    Riding, R., Fralick, P., Liang, L., 2014. Identification of an Archean marine oxygen oasis. Precambrian Res. 251, 232-237
    [150]
    Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., Kasten, S., 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172-181
    [151]
    Roerdink, D.L., Mason, P.R., Whitehouse, M.J., Brouwer, F.M., 2016. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 280, 195-204
    [152]
    Roland, F.A., Borges, A.V., Darchambeau, F., Llirós, M., Descy, J.-P., Morana, C., 2021. The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue. Sci. Rep. 11, 1-11
    [153]
    Romano, A., 2006. Programa Geologia do Brasil. Folha Pará de Minas SE-23-ZCI. Escala 1:100.000 relatório final. UFMG-CPRM, Belo Horizonte (in Portuguese)
    [154]
    Romano, R., Lana, C., Alkmim, F.F., Stevens, G., Armstrong, R., 2013. Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Res. 224, 143-159
    [155]
    Schidlowski, M., 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history:evolution of a concept. Precambrian Res. 106, 117-134
    [156]
    Schirrmeister, B.E., Sanchez-Baracaldo, P., Wacey, D., 2016. Cyanobacterial evolution during the Precambrian. Int. J. Astrobiol. 15, 187-204
    [157]
    Schumann, R., Stewart, W., Miller, S., Kawashima, N., Li, J., Smart, R., 2012. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method. Sci. Total Environ. 424, 289-296
    [158]
    Scott, C.T., Bekker, A., Reinhard, C.T., Schnetger, B., Krapež, B., Rumble III, D., Lyons, T.W., 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119-122
    [159]
    Selvaraja, V., Caruso, S., Fiorentini, M., LaFlamme, C., 2019. The Global Sedimentary Sulfur Isotope Database.
    [160]
    Selvaraja, V., Caruso, S., Fiorentini, M.L., LaFlamme, C.K., Bui, T.-H., 2017. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia. Geology 45, 691-694
    [161]
    Siebert, C., Kramers, J., Meisel, T., Morel, P., Nägler, T.F., 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta 69, 1787-1801
    [162]
    Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536-1544
    [163]
    Slotznick, S.P., Eiler, J.M., Fischer, W.W., 2018. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochim. Cosmochim. Acta 224, 96-115
    [164]
    Steadman, J., Large, R., Blamey, N., Mukherjee, I., Corkrey, R., Danyushevsky, L., Maslennikov, V., Hollings, P., Garven, G., Brand, U., 2020. Evidence for elevated and variable atmospheric oxygen in the Precambrian. Precambrian Res. 343, 105722. 105710.101016/j.precamres.102020.105722.
    [165]
    Stüeken, E.E., Buick, R., Lyons, T.W., 2019. Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Res. 334, 105474. 105410.101016/j.precamres.102019.105474.
    [166]
    Stüeken, E.E., Catling, D.C., Buick, R., 2012. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722-725
    [167]
    Tedeschi, M., Hagemann, S.G., Roberts, M.P., Evans, N.J., 2018. The Karouni Gold Deposit, Guyana, South America:Part II. Hydrothermal Alteration and Mineralization. Econ. Geol. 113, 1705-1732
    [168]
    Teixeira, W., Ávila, C., Dussin, I., Neto, A.C., Bongiolo, E., Santos, J., Barbosa, N., 2015. A juvenile accretion episode (2.35-2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny:Zircon U-Pb-Hf and geochemical evidences. Precambrian Res. 256, 148-169
    [169]
    Thomazo, C., Ader, M., Farquhar, J., Philippot, P., 2009a. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65-75
    [170]
    Thomazo, C., Nisbet, E.G., Grassineau, N.V., Peters, M., Strauss, H., 2013. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe):A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean? Geochim. Cosmochim. Acta 121, 120-138
    [171]
    Thomazo, C., Pinti, D.L., Busigny, V., Ader, M., Hashizume, K., Philippot, P., 2009b. Biological activity and the Earth's surface evolution:insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C. R. Palevol 8, 665-678
    [172]
    Tuinstra, F., Koenig, J.L., 1970. Raman spectrum of graphite. J. Chem. Phys. 53, 1126-1130
    [173]
    Ueno, Y., 2014. Coping with low ocean sulfate. Science 346, 703-704
    [174]
    Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y., 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516-519
    [175]
    Verma, S.K., Oliveira, E.P., Silva, P.M., Moreno, J.A., Amaral, W.S., 2017. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil:Implications for the origin, evolution, and tectonic setting. Lithos 284, 560-577
    [176]
    Vial, D., Abreu, G., Schubert, G., Ribeiro-Rodrigues, L., 2007. Smaller gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Ore Geol. Rev. 32, 651-673
    [177]
    Wang, Y., Hendy, I.L., Latimer, J.C., Bilardello, D., 2019. Diagenesis and iron paleo-redox proxies:New perspectives from magnetic and iron speciation analyses in the Santa Barbara Basin. Chem. Geol. 519, 95-109
    [178]
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F.v., Quadt, A.v., Roddick, J., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsletter 19, 1-23
    [179]
    Williford, K.H., Ushikubo, T., Lepot, K., Kitajima, K., Hallmann, C., Spicuzza, M.J., Kozdon, R., Eigenbrode, J.L., Summons, R.E., Valley, J.W., 2016. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale:Neoarchean shales and carbonates. Geobiology 14, 105-128
    [180]
    Wit, D., 1998. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10, 250-259
    [181]
    Wu, L., Beard, B.L., Roden, E.E., Johnson, C.M., 2009. Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite. Geochim. Cosmochim. Acta 73, 5584-5599
    [182]
    Xue, Y., Campbell, I., Ireland, T.R., Holden, P., Armstrong, R., 2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits. Geology 41, 791-794
    [183]
    Zahnle, K., Claire, M., Catling, D., 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271-283
    [184]
    Zerkle, A.L., Claire, M.W., Domagal-Goldman, S.D., Farquhar, J., Poulton, S.W., 2012. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359-363
    [185]
    Zhang, Y., Gao, J.-F., Ma, D., Pan, J., 2018. The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geol. Rev. 95, 1008-1027
    [186]
    Zhelezinskaia, I., Kaufman, A.J., Farquhar, J., Cliff, J., 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346, 742-744
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return