Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Alice Bosco-Santos, William Patrick Gilhooly III, Paola de Melo-Silva, Fotios Fouskas, Amaury Bouyon, João Gabriel Motta, Mauricio Rigoni Baldim, Wendell Fabricio-Silva, Pascal Philippot, Elson Paiva Oliveira. Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101250. doi: 10.1016/j.gsf.2021.101250
Citation: Alice Bosco-Santos, William Patrick Gilhooly III, Paola de Melo-Silva, Fotios Fouskas, Amaury Bouyon, João Gabriel Motta, Mauricio Rigoni Baldim, Wendell Fabricio-Silva, Pascal Philippot, Elson Paiva Oliveira. Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101250. doi: 10.1016/j.gsf.2021.101250

Neoarchean atmospheric chemistry and the preservation of S-MIF in sediments from the São Francisco Craton

doi: 10.1016/j.gsf.2021.101250

We thank Sã

o Paulo Research Foundation (FAPESP grants 2016/02933-2 to ABS, 12/15824-6 to EPO and 2015/16235-2 to PP) and the Agouron Institute (to WPG) for financial support. We also thank Jaguar Mining Co for technical and logistic support. Special thanks to Armando José

a Grande mine. Thank you to Brooke Vander Pas (IUPUI) and Eric Haitt (University of Wisconsin-Oshkosh) for preparing the thin sections. We appreciate helpful comments and discussions with Wil Leavitt and Mariana Brando Soares that helped improve our interpretations. Comments and detailed revisions from Nivea Magalhã

Massucatto and Romulo Thiago Cruz for their assistance at Roç

es and an anonymous reviewer significantly improved the manuscript.

  • Received Date: 2020-09-16
  • Accepted Date: 2021-06-04
  • Rev Recd Date: 2021-05-14
  • Publish Date: 2021-06-07
  • Sulfur mass-independent fractionation (S-MIF) preserved in Archean sedimentary pyrite is interpreted to reflect atmospheric chemistry. Small ranges in Δ33S that expanded into larger fractionations leading up to the Great Oxygenation Event (GOE; 2.45-2.2 Ga) are disproportionately represented by sequences from the Kaapvaal and Pilbara Cratons. These patterns of S-MIF attenuation and enhancement may differ from the timing and magnitude of minor sulfur isotope fractionations reported from other cratons, thus obscuring local for global sulfur cycling dynamics. By expanding the Δ33S record to include the relatively underrepresented São Francisco Craton in Brazil, we suggest that marine biogeochemistry affected S-MIF preservation prior to the GOE. In an early Neoarchean sequence (2763-2730 Ma) from the Rio das Velhas Greenstone Belt, we propose that low δ13Corg (<-30‰) and dampened Δ33S (0.4‰ to -0.7‰) in banded iron formation reflect the marine diagenetic process of anaerobic methane oxidation. The overlying black shale (TOC up to 7.8%) with higher δ13Corg (-33.4‰ to -19.2‰) and expanded Δ33S (2.3‰ ±0.8‰), recorded oxidative sulfur cycling that resulted in enhance preservation of S-MIF input from atmospheric sources of elemental sulfur. The sequence culminates in a metasandstone, where concomitant changes to more uniform δ13Corg (-30‰ to -25‰), potentially associated with the RuBisCO I enzyme, and near-zero Δ33S (-0.04‰ to 0.38‰) is mainly interpreted as evidence for local oxygen production. When placed in the context of other sequences worldwide, the Rio das Velhas helps differentiate the influences of global atmospheric chemistry and local marine diagenesis in Archean biogeochemical processes. Our data suggest that prokaryotic sulfur, iron, and methane cycles might have an underestimated role in pre-GOE sulfur minor isotope records.
  • loading
  • [1]
    Ague, J.J., Van Haren, J.L., 1996. Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Econ. Geol. 91, 1169-1182
    Alkmim, F.F., Marshak, S., 1998. Transamazonian orogeny in the Southern Sao Francisco craton region, Minas Gerais, Brazil:evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrıfero. Precambrian Res. 90, 29-58
    Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J., 2007. A whiff of oxygen before the great oxidation event? Science 317, 1903-1906
    Antler, G., Turchyn, A.V., Herut, B., Sivan, O., 2015. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane. Geology 43, 619-622
    Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., Wallis, S., 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. J. Metamorph. Geol 28, 895-914
    Araújo, J.C.S., Ferreira, R., Freitas, F., Magalhães, J., 2020a. The Archean Rio das Velhas greenstone belt revisited:new insights into the stratigraphy. J. Geol. Surv. Brazil 3, 113-149
    Araújo, J.C.S., Lobato, L.M., 2019. Depositional model for banded iron formation host to gold in the Archean Rio das Velhas greenstone belt, Brazil, based on geochemistry and LA-ICP-MS magnetite analyses. J. South Am. Earth Sci. 94, 102205. 102210.101016/j.jsames.102019.102205.102021.
    Araújo, J.C.S., Ribeiro, J.H., Tuller, M.P., Signorelli, N., 2020b. Carta geológica e de recursos minerais da folha Gandarela (SE. 23-XA-III-2-NO):Quadrilátero Ferrífero (in Portuguese).
    Baltazar, O., Silva, S., 1996. Projeto Rio das Velhas:Mapa Geológico Integrado do Supergrupo Rio das Velhas, escala 1:100.000. Braz. Geol. Surv.-CPRM (in Portuguese).
    Baltazar, O., Baars, F., Lobato, L., Reis, L., Achtschin, A., Berni, G., Silveira, V., 2005. Mapa geológico do Quadrilátero Ferrífero na escala 1:50.000 com nota explicativa. CODEMIG (in Portuguese)
    Baltazar, O., Zucchetti, M., 2007. Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil:A review of the setting of gold deposits. Ore Geol. Rev. 32, 471-499
    Bekker, A., Holland, H., Wang, P.-L., Rumble, D., Stein, H., Hannah, J., Coetzee, L., Beukes, N., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117-120
    Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O., Rouxel, O.J., 2010. Iron formation:the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467-508
    Beny-Bassez, C., Rouzaud, J., 1984. Characterization of Carbonaceous Materials by Correlated Electron and Optical Microscopy and Raman Microspectroscopy. Scan. Electron Microsc. 1985, 11
    Beyssac, O., Goffé, B., Chopin, C., Rouzaud, J., 2002. Raman spectra of carbonaceous material in metasediments:a new geothermometer. J. Metamorph. Geol. 20, 859-871
    Bleeker, W., 2003. The late Archean record:a puzzle in ca. 35 pieces. Lithos 71, 99-134
    Bosco-Santos, A., Gilhooly III, W.P., Fouskas, F., Fabricio-Silva, W., Oliveira, E.P., 2020. Euxinia in the Neoarchean:The starting point for early oxygenation in a Brazilian Craton. Precambrian Res. 341, 105655. 105610.101016/j.precamres.102020.105655.
    Brando Soares, M., Neto, A.V.C., Fabricio-Silva, W., 2020. The development of a Meso-to Neoarchean rifting-convergence-collision-collapse cycle over an ancient thickened protocontinent in the south São Francisco craton, Brazil. Gondwana Res. 77, 40-66
    Brando Soares, M.N., Atlas Vasconcelos Corrêa, Zeh, A., Cabral, A.R., Pereira, L.F., do Prado, M.G.B., de Almeida, A.M., Manduca, L.G., da Silva, P.H.M., de Araújo Mabub, R.O., 2017. Geology of the Pitangui greenstone belt, Minas Gerais, Brazil:stratigraphy, geochronology and BIF geochemistry. Precambrian Res. 291, 17-41
    Bucher, K., Grapes, R., 2011. Petrogenesis of metamorphic rocks. Springer Science & Business Media
    Bühn, B., Santos, R.V., Dardenne, M.A., de Oliveira, C.G., 2012. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem. Geol. 312, 163-176
    Buseck, P.R., Beyssac, O., 2014. From organic matter to graphite:Graphitization. Elements 10, 421-426
    Canfield, D.E., Habicht, K.S., Thamdrup, B., 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658-661
    Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149-155
    Canfield, D.E., Zhang, S., Wang, H., Wang, X., Zhao, W., Su, J., Bjerrum, C.J., Haxen, E.R., Hammarlund, E.U., 2018. A Mesoproterozoic iron formation. Proc. Natl. Acad. Sci. U.S.A. 115, E3895-E3904
    Caruso, S., Fiorentini, M.L., Hollis, S.P., LaFlamme, C., Baumgartner, R.J., Steadman, J.A., Savard, D., 2018. The fluid evolution of the Nimbus Ag-Zn-(Au) deposit:An interplay between mantle plume and microbial activity. Precambrian Res. 317, 211-229
    Chang, S.-B.R., Kirschvink, J.L., 1985. Possible biogenic magnetite fossils from the Late Miocene Potamida clays of Crete. In:Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Organisms. Topics in Geobiology, vol 5. Springer, Boston, MA, pp. 647-669. 10.1007/978-1-4613-0313-8_36.
    Chen, M., Campbell, I.H., Xue, Y., Tian, W., Ireland, T.R., Holden, P., Cas, R.A., Hayman, P.C., Das, R., 2015. Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic Bore Volcanic Complex, Yilgarn Craton, Western Australia. Econ. Geol. 110, 1411-1423
    Cheney, E., 1996. Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res. 79, 3-24
    Claire, M.W., Kasting, J.F., Domagal-Goldman, S.D., Stüeken, E.E., Buick, R., Meadows, V.S., 2014. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141, 365-380
    Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol. Oceanogr. 14, 454-458
    Cox, J., Pressacco, R., 2016. Technical Report on the Roça Grande and Pilar Mines, Minas Gerais State, Brazil. Jaguar Mining Company
    Crowe, S.A., Døssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., Canfield, D.E., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535-538
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10, 1765-1787
    da Silva, L.C., Noce, C.M., Lobato, L.M., 2017. Dacitic volcanism in the course of the Rio Das Velhas (2800-2690 Ma) Orogeny:A Brazilian Archean Analogue (TTD) to the modern adakites. Brazilian J. Geol. 30, 384-387
    de Kock, M.O., Evans, D.A., Beukes, N.J., 2009. Validating the existence of Vaalbara in the Neoarchean. Precambrian Res. 174, 145-154
    DeWitt, H.L., Hasenkopf, C.A., Trainer, M.G., Farmer, D.K., Jimenez, J.L., McKay, C.P., Toon, O.B., Tolbert, M.A., 2010. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions:implications for early earth. Astrobiology 10, 773-781
    Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P., Gonfiantini, R., Krouse, R., 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65, 2433-2437
    Domagal-Goldman, S.D., Kasting, J.F., Johnston, D.T., Farquhar, J., 2008. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29-40
    Dopico, C.I.M., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161
    Fabre, S., Nédélec, A., Poitrasson, F., Strauss, H., Thomazo, C., Nogueira, A., 2011. Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil):Implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem. Geol. 289, 124-139
    Fakhraee, M., Crowe, S.A., Katsev, S., 2018. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4, e1701835. 1701810.1701126/sciadv.1701835.
    Farina, F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium-and high-K granitoids:Clues from the Southern São Francisco Craton (Brazil). Precambrian Res. 266, 375-394
    Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756-758
    Farquhar, J., Cliff, J., Zerkle, A.L., Kamyshny, A., Poulton, S.W., Claire, M., Adams, D., Harms, B., 2013. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl. Acad. Sci. U.S.A. 110, 17638-17643
    Farquhar, J., Peters, M., Johnston, D.T., Strauss, H., Masterson, A., Wiechert, U., Kaufman, A.J., 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706-709
    Farquhar, J., Savarino, J., Airieau, S., Thiemens, M.H., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis:Implications for the early atmosphere. J. Geophys. Res. Planets 106, 32829-32839
    Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1-13
    Ferry, J.M., 1981. Petrology of graphitic sulfide-rich schists from south-central Maine:an example of desulfidation during prograde regional metamorphism. Am. Mineral. 66, 908-930
    Fiorentini, M.L., Bekker, A., Rouxel, O., Wing, B.A., Maier, W., Rumble, D., 2012. Multiple sulfur and iron isotope composition of magmatic Ni-Cu-(PGE) sulfide mineralization from eastern Botswana. Econ. Geol. 107, 105-116
    Fiorentini, M.L., LaFlamme, C., Denyszyn, S., Mole, D., Maas, R., Locmelis, M., Caruso, S., Bui, T.-H., 2018. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochim. Cosmochim. Acta 223, 175-197
    Fischer, W.W., Fike, D.A., Johnson, J.E., Raub, T.D., Guan, Y., Kirschvink, J.L., Eiler, J.M., 2014. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl. Acad. Sci. U.S.A. 111, 5468-5473
    Floyd, P., Leveridge, B., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall:framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 144, 531-542
    Grant, J.A., 1986. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration. Econ. Geol. 81, 1976-1982
    Gregory, D.D., Large, R.R., Bath, A.B., Steadman, J.A., Wu, S., Danyushevsky, L., Bull, S.W., Holden, P., Ireland, T.R., 2016. Trace element content of pyrite from the kapai slate, St. Ives Gold District, Western Australia. Econ. Geol. 111, 1297-1320
    Gregory, D.D., Large, R.R., Halpin, J.A., Steadman, J.A., Hickman, A.H., Ireland, T.R., Holden, P., 2015. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses. Geochim. Cosmochim. Acta 149, 223-250
    Gumsley, A.P., Chamberlain, K.R., Bleeker, W., Söderlund, U., de Kock, M.O., Larsson, E.R., Bekker, A., 2017. Timing and tempo of the Great Oxidation Event. Proc. Natl. Acad. Sci. U.S.A. 114, 1811-1816
    Guo, Q., Strauss, H., Kaufman, A.J., Schröder, S., Gutzmer, J., Wing, B., Baker, M.A., Bekker, A., Jin, Q., Kim, S.-T., 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology 37, 399-402
    Guy, B., Ono, S., Gutzmer, J., Kaufman, A., Lin, Y., Fogel, M., Beukes, N., 2012. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Res. 216, 208-231
    Guy, B., Ono, S., Gutzmer, J., Lin, Y., Beukes, N., 2014. Sulfur sources of sedimentary "buckshot" pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Miner. Depos. 49, 751-775
    Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., 2002. Calibration of sulfate levels in the Archean ocean. Science 298, 2372-2374
    Halevy, I., 2013. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl. Acad. Sci. U.S.A. 110, 17644-17649
    Halevy, I., Johnston, D.T., Schrag, D.P., 2010. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204-207
    Hauri, E.H., Papineau, D., Wang, J., Hillion, F., 2016. High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chem. Geol. 420, 148-161
    Havig, J.R., Hamilton, T.L., Bachan, A., Kump, L.R., 2017. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth-Sci. Rev. 174, 1-21
    Heilbron, M., Cordani, U.G., Alkmim, F.F., 2017. The São Francisco craton and its margins, São Francisco Craton, Eastern Brazil. Springer, pp. 3-13
    Henry, D.G., Jarvis, I., Gillmore, G., Stephenson, M., 2019. Raman spectroscopy as a tool to determine the thermal maturity of organic matter:Application to sedimentary, metamorphic and structural geology. Earth-Sci. Rev. 198, 102936. 102910.101016/j.earscirev.102019.102936.
    Hinrichs, K.U., 2002. Microbial fixation of methane carbon at 2.7 Ga:Was an anaerobic mechanism possible? Geochem. Geophy. Geosy. 3, 1-10
    Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., Master, S., 2009. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks:A new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436-445
    Holland, H.D., 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811-3826
    Hood, S.B., Cracknell, M.J., Gazley, M.F., Reading, A.M., 2019. Element mobility and spatial zonation associated with the Archean Hamlet orogenic Au deposit, Western Australia:Implications for fluid pathways in shear zones. Chem. Geol. 514, 10-26
    Hou, K., Li, Y., Wan, D., 2007. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaoning Province, China. Sci. China Earth Sci. 50, 1471-1478
    Hu, G., Rumble, D., Wang, P.-L., 2003. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta 67, 3101-3118
    Izon, G., Zerkle, A.L., Zhelezinskaia, I., Farquhar, J., Newton, R.J., Poulton, S.W., Eigenbrode, J.L., Claire, M.W., 2015. Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264-273
    Jamieson, J.W., Wing, B.A., Hannington, M.D., Farquhar, J., 2006. Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits:case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ. Geol. 101, 1055-1061
    Jehlička, J., Beny, C., 1999. First and second-order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks. J. Mol. Struct. 480, 541-545
    Johnson, C.M., Beard, B.L., Klein, C., Beukes, N.J., Roden, E.E., 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151-169
    Johnson, C.M., Ludois, J.M., Beard, B.L., Beukes, N.J., Heimann, A., 2013. Iron formation carbonates:Paleoceanographic proxy or recorder of microbial diagenesis? Geology 41, 1147-1150
    Johnston, D.T., 2011. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Sci. Rev. 106, 161-183
    Johnston, D.T., Poulton, S.W., Dehler, C., Porter, S., Husson, J., Canfield, D.E., Knoll, A.H., 2010. An emerging picture of Neoproterozoic ocean chemistry:Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64-73
    Kamber, B., Whitehouse, M., 2007. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5, 5-17
    Kaufman, A.J., Johnston, D.T., Farquhar, J., Masterson, A.L., Lyons, T.W., Bates, S., Anbar, A.D., Arnold, G.L., Garvin, J., Buick, R., 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900-1903
    Köhler, I., Konhauser, K.O., Papineau, D., Bekker, A., Kappler, A., 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4, 1-7
    Konhauser, K., Newman, D., Kappler, A., 2005. The potential significance of microbial Fe (III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167-177
    Kresse, C., Lobato, L.M., Hagemann, S.G., e Silva, R.C.F., 2018. Sulfur isotope and metal variations in sulfides in the BIF-hosted orogenic Cuiabá gold deposit, Brazil:implications for the hydrothermal fluid evolution. Ore Geol. Rev. 98, 1-27
    Kurzweil, F., Claire, M., Thomazo, C., Peters, M., Hannington, M., Strauss, H., 2013. Atmospheric sulfur rearrangement 2.7 billion years ago:Evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366, 17-26
    Labidi, J., Cartigny, P., Moreira, M., 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208-211
    LaFlamme, C., Jamieson, J.W., Fiorentini, M.L., Thébaud, N., Caruso, S., Selvaraja, V., 2018. Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton. Gondwana Res. 58, 27-38
    Lalonde, S.V., Konhauser, K.O., 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 112, 995-1000
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr, H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 231, 157-173
    Lebrun, E., Thébaud, N., Miller, J., Roberts, M., Evans, N., 2017. Mineralisation footprints and regional timing of the world-class Siguiri orogenic gold district (Guinea, West Africa). Miner. Depos. 52, 539-564
    Lepot, K., Williford, K.H., Philippot, P., Thomazo, C., Ushikubo, T., Kitajima, K., Mostefaoui, S., Valley, J.W., 2019. Extreme 13C-depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites. Geochim. Cosmochim. Acta 244, 522-547
    Li, J., Zhang, Z., Stern, R.A., Hannah, J.L., Stein, H.J., Yang, G., Li, L., 2017. Primary multiple sulfur isotopic compositions of pyrite in 2.7 Ga shales from the Joy Lake sequence (Superior Province) show felsic volcanic array-like signature. Geochim. Cosmochim. Acta 202, 310-340
    Liu, J., Pellerin, A., Antler, G., Kasten, S., Findlay, A.J., Dohrmann, I., Røy, H., Turchyn, A.V., Jørgensen, B.B., 2020a. Early diagenesis of iron and sulfur in Bornholm Basin sediments:The role of near-surface pyrite formation. Geochim. Cosmochim. Acta 284, 43-60
    Liu, J., Pellerin, A., Izon, G., Wang, J., Antler, G., Liang, J., Su, P., Jørgensen, B.B., Ono, S., 2020b. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron. Earth Planet. Sci. Lett. 536, 116165. 116110.111016/j.epsl.112020.116165.
    Liu, L., Ireland, T., Holden, P., 2020. In-situ quadruple sulfur isotopic compositions of pyrites in the ca. 3.2-2.72 Ga metasedimentary rocks from the Pilbara Craton, Western Australia. Chem. Geol. 557, 119837. 119810.111016/j.chemgeo.112020.119837.
    Lobato, L.M., Ribeiro-Rodrigues, L.C., Vieira, F.W.R., 2001. Brazil's premier gold province. Part II:geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Depos. 36, 249-277
    Lobato, L.M., Vieira, F.W.R., Ribeiro-Rodrigues, L., Pereira, L., Menezes, M., Junqueira, P., Pereira, S., 1998. Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part II, the Archean mesothermal gold-bearing hydrothermal system. Brazilian J. Geol. 28, 355-366
    Ludwig, K., 2012. User's Manual for Isoplot Version 3.75-4.15:A Geochronological Toolkit for Microsoft Excel. 5. Berkley Geochronological Centre, Special Publication.
    Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S., Summons, R.E., 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134. 1600110.1601126/sciadv.1600134.
    Machado, N., Carneiro, M., 1992. U-Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can. J. Earth Sci. 29, 2341-2346
    Machado, N., Noce, C., Ladeira, E., De Oliveira, O.B., 1992. U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco craton, Brazil. Geol. Soc. Am. Bull. 104, 1221-1227
    Machado, N., Noce, C., Oliveira, O.d., Ladeira, E., 1989. Evolução geológica do Quadrilátero Ferrífero no Arqueano e Proterozóico Inferior, com base em geocronologia U-Pb. Simpósio de Geologia de Minas Gerais 5, 1-5 (in Portuguese).
    Machado, N., Schrank, A., Noce, C., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett. 141, 259-276
    Magaldi, T.T., Navarro, M.S., Enzweiler, J., 2019. Assessment of dissolution of silicate rock reference materials with ammonium bifluoride and nitric acid in a microwave oven. Geostand. Geoanal. Res. 43, 189-208
    Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., Philippot, P., 2018. Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. Geobiology 16, 121-138
    Marinho, M., Silva, M., Lombello, J., Di Salvio, L., Silva, R., Féboli, W., Brito, D., 2018. Mapa Geológico Integrado do Sinclinório Pitangui. Projeto ARIM-Áreas de Relevante Interesse Mineral-Noroeste do Quadrilátero Ferrífero (in Portuguese)
    Melo-Silva, P., da Silva Amaral, W., Oliveira, E.P., 2020. Geochronological evolution of the Pitangui greenstone belt, southern São Francisco Craton, Brazil:Constraints from U-Pb zircon age, geochemistry and field relationships. J. South Am. Earth Sci. 99, 102380. 102310.101016/j.jsames.102019.102380.
    Mishima, K., Yamazaki, R., Satish-Kumar, M., Ueno, Y., Hokada, T., Toyoshima, T., 2017. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India:Late Archean record of changing atmospheric chemistry. Earth Planet. Sci. Lett. 464, 69-83
    Moreira, H., Lana, C., Nalini Jr, H.A., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Res. 275, 84-99
    Moreira, H., Cassino, L., Lana, C., Storey, C., Albert, Capucine., 2019. Insights into orogenic process from drab schists and minor intrusions:Southern São Francisco Craton, Brazil. Lithos 346-347, 105146. 10.1016/j.lithos.2019.07.013
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., 2016. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere. Proc. Natl. Acad. Sci. U.S.A. 113, 7432-7437
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., Assayag, N., Marin-Carbonne, J., Mohan, M.R., Sarma, D.S., 2017. Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Res. 295, 38-47
    Navarro, M., Tonetto, E., Oliveira, E., 2015. LA-SF-ICP-MS U-Pb Zircon Dating at University of Campinas, Brazil. Geonalysis-2015, Wien, August.
    Navarro, M., Tonetto, E., Oliveira, E., 2017. Peixe zircon:new Brazilian reference material for U-Pb geochronology by LA-SF-ICP-MS. Goldschmidt Conference, https://goldschmidtabstracts.info/2017/3815.pdf.
    Noce, C.M., Zuccheti, M., Baltazar, O., Armstrong, R., Dantas, E., Renger, F.E., Lobato, L., 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil):U-Pb zircon dating of volcaniclastic graywackes. Precambrian Res. 141, 67-82
    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S.R., Taylor, B.E., 2006. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908-911
    Oliver, N.H., Thomson, B., Freitas-Silva, F.H., Holcombe, R.J., Rusk, B., Almeida, B.S., Faure, K., Davidson, G.R., Esper, E.L., Guimarães, P.J., 2015. Local and regional mass transfer during thrusting, veining, and boudinage in the genesis of the giant shale-hosted Paracatu gold deposit, Minas Gerais, Brazil. Econ. Geol. 110, 1803-1834
    Olson, S.L., Kump, L.R., Kasting, J.F., 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35-43
    Ono, S., 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in earth's atmosphere. Annu. Rev. Earth Pl. Sci. 45, 301-329
    Ono, S., Beukes, N.J., Rumble, D., 2009a. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 169, 48-57
    Ono, S., Beukes, N.J., Rumble, D., Fogel, M.L., 2006a. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S. Afr. J. Geol. 109, 97-108.
    Ono, S., Eigenbrode, J.L., Pavlov, A.A., Kharecha, P., Rumble III, D., Kasting, J.F., Freeman, K.H., 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15-30
    Ono, S., Kaufman, A.J., Farquhar, J., Sumner, D.Y., Beukes, N.J., 2009b. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res. 169, 58-67
    Ono, S., Wing, B., Johnston, D., Farquhar, J., Rumble, D., 2006b. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238-2252
    Papineau, D., Mojzsis, S.J., Schmitt, A.K., 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188-212
    Partin, C., Bekker, A., Planavsky, N., Lyons, T., 2015. Euxinic conditions recorded in the ca. 1.93 Ga Bravo Lake Formation, Nunavut (Canada):Implications for oceanic redox evolution. Chem. Geol. 417, 148-162
    Partridge, M.A., Golding, S.D., Baublys, K.A., Young, E., 2008. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41-49
    Pavlov, A., Kasting, J., 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27-41
    Petrus, J.A., Kamber, B.S., 2012. VizualAge:A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247-270
    Philippot, P., Ávila, J.N., Killingsworth, B.A., Tessalina, S., Baton, F., Caquineau, T., Muller, E., Pecoits, E., Cartigny, P., Lalonde, S.V., 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 1-10
    Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., Van Kranendonk, M.J., 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534-1537
    Philippot, P., Van Zuilen, M., Rollion-Bard, C., 2012. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 5, 668-674
    Planavsky, N., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T.W., 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited:new perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 74, 6387-6405
    Planavsky, N.J., Robbins, L.J., Kamber, B.S., Schoenberg, R., 2020. Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus 10, 20190140. 20190110.20191098/rsfs.20192019.20190140.
    Poulton, S., Raiswell, R., 2002. The low-temperature geochemical cycle of iron:from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774-805
    Poulton, S.W., Canfield, D.E., 2005. Development of a sequential extraction procedure for iron:implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209-221
    Poulton, S.W., Canfield, D.E., 2011. Ferruginous conditions:a dominant feature of the ocean through Earth's history. Elements 7, 107-112
    Praharaj, T., Fortin, D., 2004. Determination of acid volatile sulfides and chromium reducible sulfides in Cu-Zn and Au mine tailings. Water Air Soil Pollut. 155, 35-50
    Rahl, J.M., Anderson, K.M., Brandon, M.T., Fassoulas, C., 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks:Calibration and application to tectonic exhumation in Crete, Greece. Earth Planet. Sci. Lett. 240, 339-354
    Raiswell, R., Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219-245
    Rantitsch, G., Grogger, W., Teichert, C., Ebner, F., Hofer, C., Maurer, E.-M., Schaffer, B., Toth, M., 2004. Conversion of carbonaceous material to graphite within the Greywacke Zone of the Eastern Alps. Int. J. Earth Sci. 93, 959-973
    Reinhard, C.T., Lalonde, S.V., Lyons, T.W., 2013. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362, 44-55
    Reinhard, C.T., Raiswell, R., Scott, C., Anbar, A.D., Lyons, T.W., 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713-716
    Renger, F.E., Noce, C.M., Romano, A.W., Machado, N., 1994. Evolução sedimentar do Supergrupo Minas:500 Ma. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos, 10.18285/geonomos.v18282i18281.18227 (in Portuguese).
    Reuschel, M., Melezhik, V., Strauss, H., 2012. Sulfur isotopic trends and iron speciation from the c. 2.0 Ga Pilgujärvi Sedimentary Formation, NW Russia. Precambrian Res. 196, 193-203
    Ribeiro, Y., e Silva, R.C.F., Lobato, L.M., Lima, L.C., Rios, F.J., Hagemann, S.G., Cliff, J., 2015. Fluid inclusion and sulfur and oxygen isotope studies on quartz-carbonate-sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 67, 11-33
    Ribeiro-Rodrigues, L.C., de Oliveira, C.G., Friedrich, G., 2007. The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 32, 543-570
    Riding, R., Fralick, P., Liang, L., 2014. Identification of an Archean marine oxygen oasis. Precambrian Res. 251, 232-237
    Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., Kasten, S., 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172-181
    Roerdink, D.L., Mason, P.R., Whitehouse, M.J., Brouwer, F.M., 2016. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 280, 195-204
    Roland, F.A., Borges, A.V., Darchambeau, F., Llirós, M., Descy, J.-P., Morana, C., 2021. The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue. Sci. Rep. 11, 1-11
    Romano, A., 2006. Programa Geologia do Brasil. Folha Pará de Minas SE-23-ZCI. Escala 1:100.000 relatório final. UFMG-CPRM, Belo Horizonte (in Portuguese)
    Romano, R., Lana, C., Alkmim, F.F., Stevens, G., Armstrong, R., 2013. Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Res. 224, 143-159
    Schidlowski, M., 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history:evolution of a concept. Precambrian Res. 106, 117-134
    Schirrmeister, B.E., Sanchez-Baracaldo, P., Wacey, D., 2016. Cyanobacterial evolution during the Precambrian. Int. J. Astrobiol. 15, 187-204
    Schumann, R., Stewart, W., Miller, S., Kawashima, N., Li, J., Smart, R., 2012. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method. Sci. Total Environ. 424, 289-296
    Scott, C.T., Bekker, A., Reinhard, C.T., Schnetger, B., Krapež, B., Rumble III, D., Lyons, T.W., 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119-122
    Selvaraja, V., Caruso, S., Fiorentini, M., LaFlamme, C., 2019. The Global Sedimentary Sulfur Isotope Database.
    Selvaraja, V., Caruso, S., Fiorentini, M.L., LaFlamme, C.K., Bui, T.-H., 2017. Atmospheric sulfur in the orogenic gold deposits of the Archean Yilgarn Craton, Australia. Geology 45, 691-694
    Siebert, C., Kramers, J., Meisel, T., Morel, P., Nägler, T.F., 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta 69, 1787-1801
    Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536-1544
    Slotznick, S.P., Eiler, J.M., Fischer, W.W., 2018. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochim. Cosmochim. Acta 224, 96-115
    Steadman, J., Large, R., Blamey, N., Mukherjee, I., Corkrey, R., Danyushevsky, L., Maslennikov, V., Hollings, P., Garven, G., Brand, U., 2020. Evidence for elevated and variable atmospheric oxygen in the Precambrian. Precambrian Res. 343, 105722. 105710.101016/j.precamres.102020.105722.
    Stüeken, E.E., Buick, R., Lyons, T.W., 2019. Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Res. 334, 105474. 105410.101016/j.precamres.102019.105474.
    Stüeken, E.E., Catling, D.C., Buick, R., 2012. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722-725
    Tedeschi, M., Hagemann, S.G., Roberts, M.P., Evans, N.J., 2018. The Karouni Gold Deposit, Guyana, South America:Part II. Hydrothermal Alteration and Mineralization. Econ. Geol. 113, 1705-1732
    Teixeira, W., Ávila, C., Dussin, I., Neto, A.C., Bongiolo, E., Santos, J., Barbosa, N., 2015. A juvenile accretion episode (2.35-2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny:Zircon U-Pb-Hf and geochemical evidences. Precambrian Res. 256, 148-169
    Thomazo, C., Ader, M., Farquhar, J., Philippot, P., 2009a. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65-75
    Thomazo, C., Nisbet, E.G., Grassineau, N.V., Peters, M., Strauss, H., 2013. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe):A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean? Geochim. Cosmochim. Acta 121, 120-138
    Thomazo, C., Pinti, D.L., Busigny, V., Ader, M., Hashizume, K., Philippot, P., 2009b. Biological activity and the Earth's surface evolution:insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C. R. Palevol 8, 665-678
    Tuinstra, F., Koenig, J.L., 1970. Raman spectrum of graphite. J. Chem. Phys. 53, 1126-1130
    Ueno, Y., 2014. Coping with low ocean sulfate. Science 346, 703-704
    Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y., 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516-519
    Verma, S.K., Oliveira, E.P., Silva, P.M., Moreno, J.A., Amaral, W.S., 2017. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil:Implications for the origin, evolution, and tectonic setting. Lithos 284, 560-577
    Vial, D., Abreu, G., Schubert, G., Ribeiro-Rodrigues, L., 2007. Smaller gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Ore Geol. Rev. 32, 651-673
    Wang, Y., Hendy, I.L., Latimer, J.C., Bilardello, D., 2019. Diagenesis and iron paleo-redox proxies:New perspectives from magnetic and iron speciation analyses in the Santa Barbara Basin. Chem. Geol. 519, 95-109
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F.v., Quadt, A.v., Roddick, J., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsletter 19, 1-23
    Williford, K.H., Ushikubo, T., Lepot, K., Kitajima, K., Hallmann, C., Spicuzza, M.J., Kozdon, R., Eigenbrode, J.L., Summons, R.E., Valley, J.W., 2016. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale:Neoarchean shales and carbonates. Geobiology 14, 105-128
    Wit, D., 1998. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10, 250-259
    Wu, L., Beard, B.L., Roden, E.E., Johnson, C.M., 2009. Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite. Geochim. Cosmochim. Acta 73, 5584-5599
    Xue, Y., Campbell, I., Ireland, T.R., Holden, P., Armstrong, R., 2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits. Geology 41, 791-794
    Zahnle, K., Claire, M., Catling, D., 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271-283
    Zerkle, A.L., Claire, M.W., Domagal-Goldman, S.D., Farquhar, J., Poulton, S.W., 2012. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359-363
    Zhang, Y., Gao, J.-F., Ma, D., Pan, J., 2018. The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China. Ore Geol. Rev. 95, 1008-1027
    Zhelezinskaia, I., Kaufman, A.J., Farquhar, J., Cliff, J., 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346, 742-744
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint