Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Guilherme S. Teles, Farid Chemale, Janaína N. Ávila, Trevor R. Ireland. The Paleoarchean Northern Mundo Novo Greenstone Belt, São Francisco Craton: Geochemistry, U-Pb-Hf-O in zircon and pyrite δ34S-Δ33S-Δ36S signatures[J]. Geoscience Frontiers, 2022, 13(5): 101252. doi: 10.1016/j.gsf.2021.101252
Citation: Guilherme S. Teles, Farid Chemale, Janaína N. Ávila, Trevor R. Ireland. The Paleoarchean Northern Mundo Novo Greenstone Belt, São Francisco Craton: Geochemistry, U-Pb-Hf-O in zircon and pyrite δ34S-Δ33S-Δ36S signatures[J]. Geoscience Frontiers, 2022, 13(5): 101252. doi: 10.1016/j.gsf.2021.101252

The Paleoarchean Northern Mundo Novo Greenstone Belt, São Francisco Craton: Geochemistry, U-Pb-Hf-O in zircon and pyrite δ34S-Δ33S-Δ36S signatures

doi: 10.1016/j.gsf.2021.101252
Funds:

We acknowledge the Brazilian National Council for Scientific and Technological Development (CNPq) for financial support (grants 163459/2013-4 and 202267/2014-8 for G. S Teles and 305053/2014-0 for F. Chemale Jr.), and the Australian Research Council (ARC) (grant DP140103393 for T. R. Ireland). We are thankful to Cid Bonfim for his assistance during fieldwork and to Tiago Girelli for Lu-Hf data acquisition. We would like to thank the Guest Editor Kathryn Cutts and the two anonymous reviewers for valuable comments that helped to improve this paper.

  • Received Date: 2020-10-24
  • Accepted Date: 2021-06-15
  • Rev Recd Date: 2021-06-02
  • Publish Date: 2021-06-17
  • Greenstone belts contain several clues about the evolutionary history of primitive Earth. Here, we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block, named the Northern Mundo Novo Greenstone Belt (N-MNGB), and present data collected with different techniques, including U-Pb-Hf-O isotopes of zircon and multiple sulfur isotopes (32S, 33S, 34S, and 36S) of pyrite from this supracrustal sequence. A pillowed metabasalt situated in the upper section of the N-MNGB is 3337 ±25 Ma old and has zircon with εHf(t)= -2.47 to -1.40, Hf model ages between 3.75 Ga and 3.82 Ga, and δ18O=+3.6‰ to +7.3‰. These isotopic data, together with compiled whole-rock trace element data, suggest that the mafic metavolcanic rocks formed in a subduction-related setting, likely a back-arc basin juxtaposed to a continental arc. In this context, the magma interacted with older Eoarchean crustal components from the Gavião Block. Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks, in accordance with previous studies, yielding a maximum depositional age of 3353 ±22 Ma. These detrital zircons have εHf(t)=-5.40 to -0.84, Hf model ages between 3.66 Ga and 4.30 Ga, and δ18O=+4.8‰ to +6.4‰. The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling. The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs. Significantly, they preserve the signal of the anoxic Archean atmosphere, expressed by MIF-S signatures (Δ33S between -1.3‰ to +1.4‰) and a Δ36S/Δ33S slope of -0.81 that is indistinguishable from the so-called Archean array. A BIF sample has a magmatic origin of sulfur, as indicated by the limited δ34S range (0 to +2‰), Δ33S~0‰, and Δ36S~0‰. A carbonaceous schist shows positive δ34S (2.1‰-3.5‰) and elevated Δ33S (1.2‰-1.4‰) values, with corresponding negative Δ36S between -1.2‰ to -0.2‰, which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur. The pillowed metabasalt displays heterogeneous δ34S, Δ33S, and Δ36S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration. Lastly, pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide, which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.
  • loading
  • [1]
    Agangi, A., Hofmann, A., Eickmann, B., Marin-Carbonne, J.M., Reddy, S., 2016. An atmospheric source of S in Mesoarchean structurally-controlled gold mineralisation of the Barberton Greenstone Belt. Precambrian Res. 285, 10-20
    [2]
    Anhaeusser, C.R., Mason, R., Viljoen, M.J., Viljoen, R.P., 1969. A reappraisal of some aspects of Precambrian shield geology. Geol. Soc. Am. Bull. 80, 2175-2200
    [3]
    Anhaeusser, C.R, 2014. Archaean greenstone belts and associated granitic rocks-A review. J. Afr. Earth Sci. 100, 684-732
    [4]
    Ávila, J.N., Ireland, T.R., Holden, P., Lanc, P., Latimore, A., Schram, N., Foster, J., Williams, I.S., Loiselle, L., Fu, B., 2020. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI. Geostand. Geoanal. Res. 44, 85-102
    [5]
    Bao, H., Rumble III, D., Lowe, D.R., 2007. The five stable isotope compositions of Fig Tree barites:implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim. Cosmochim. Acta 71, 4868-4879
    [6]
    Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil:geodynamic features. Precambrian Res. 133, 1-27
    [7]
    Barbosa, N., Teixeira, W., Leal, L.R.B., Menezes Leal, A.B., 2013. Evolução crustal do setor ocidental do Bloco Arqueano Gavião, Cráton do São Francisco, com base em evidências U-Pb, Sm-Nd e Rb-Sr. Geol. USP Sér. Cient. 13 (4), 63-88 (in Portuguese)
    [8]
    Barbuena, D., 2017. Geoquímica e geocronologia das rochas supracrustais do Greenstone Belt de Mundo Novo, Bahia:Evidências de uma bacia de back-arc na transição entre o Mesoarqueano e o Neoarqueano. Ph.D. thesis, Universidade de Campinas, 174 pp (in Portuguese).
    [9]
    Bekker, A., Barley, M.E., Fiorentini, M.L., Rouxel, O.J., Rumble, D., Beresford, S.W., 2009. Atmospheric sulfur in Archaean komatiite hosted nickel deposits. Science 326, 1086-1089
    [10]
    Black, L.P., Kamo, S.L., Williams, I.S., Mundil, R., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem. Geol. 200, 171-188
    [11]
    Borges, V.S.M., Silva, M.G., Leal, A.B.M, Cunha, J.C., 2004. Litogeoquímica e Metalogênese das rochas da Fazenda Coqueiro, Greenstone Belt de Mundo Novo, Bahia. In:Anais do 42° Congresso Brasileiro de Geologia, Araxá, 3 pp (in Portuguese).
    [12]
    Boynton, W.V., 1984. Cosmochemistry of Rare Earth Elements:Meteorite Studies. In:Henderson, P. (ed.), Rare Earth Element Geochemistry. Elsevier, p. 63-114.
    [13]
    Chemale Jr., F., Guadagnin, F., 2019. Chronochemostratigraphy of platform sequences across the Paleoproterozoic-Mesoproterozoic transition. In:Sial, A.N., Gaucher, C., Ramkumar, M., Ferreira, V.P. (Eds.), Chemostratigraphy Across Major Chronological Boundaries, Geophysical Monograph 240. AGU, John Wiley & Sons, p. 47-71.
    [14]
    Chen, M., Campbell, I.H., Xue, Y., Tian, W., Ireland, T.R., Holden, P., Cas, R.A.F., Hayman, P.C., Das, R., 2015. Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic Bore Volcanic Complex, Yilgarn Craton, Western Australia. Econ. Geol. 110, 1411-1423
    [15]
    Chu, N.C., Taylor, R.N, Chavagnac, V., Nesbitt, R.W, Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom. 17, 1567-1574
    [16]
    Compston, W., Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. Solid Earth 89, B525-B534
    [17]
    Condie, K.C., 1981. Archean Greenstone Belts. Elsevier, 434p.
    [18]
    Crowe, D.E., Vaughan, G., 1996. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. Am. Mineral. 81, 187-193
    [19]
    Cruz, S.C.P., Barbosa, J.S.F., Pinto, M.S., Peucat, J.J., Paquette, J.L., Souza, J.S., Martins, V.S., Chemale Jr., F., Carneiro, M.A., 2016. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil:U-Pb geochronology, geochemistry and tectonic implications. J. S. Am. Earth Sci. 69, 43-79
    [20]
    de Wit, M.J., 2004. Archean Greenstone Belts Do Contain Fragments of Ophiolites. In:Kusky, T.M. (ed.), Developments in Precambrian Geology 13. Elsevier, p. 599-614.
    [21]
    Ding, T., Valkiers, S., Kipphardt, H., Bievre, P., Taylor, P., Gonfiantini, R., Krouse, R., 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65, 2433-2437
    [22]
    Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O'Neil, J., Little, C.T.S., 2017. Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543, 60-64
    [23]
    dos Santos F.P., Chemale, Jr., F., Meneses, A.R.A.S., 2019. The nature of the Paleoproterozoic orogen in the Jacobina Range and adjacent areas, northern São Francisco craton, Brazil, based on structural geology and gravimetric modeling. Precambrian Res. 332, 105391
    [24]
    Eriksson, K.A., Krapez, B., Fralick, P.W., 1994. Sedimentology of Archean greenstone belts:signatures of tectonic evolution. Earth-Sci. Rev. 37, 1-88
    [25]
    Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 756-758
    [26]
    Farquhar, J., Savarino, J., Airieau, S., Thiemens, M.H., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis:Implications for the early atmosphere. J. Geophys. Res. 106, 32829-32839
    [27]
    Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1-13
    [28]
    Farquhar, J., Wu, N.P., Canfield, D.E., Oduro, H., 2010. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ. Geol. 105, 509-533
    [29]
    Furnes, H., Dilek, Y., de Wit, M.J., 2015. Precambrian greenstone sequences represent different ophiolite types. Gondwana Res. 27, 649-685
    [30]
    Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons:Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249, 47-61
    [31]
    Golding, S.D., Duck, L.J., Young, E., Baublys, K.A., Glikson, M., Kamber, B.S., 2011. Earliest seafloor hydrothermal systems on Earth:comparisons with modern analogues. In:Golding, S.D., Glikson, M. (Eds.), Earliest life on Earth:habitats, environments and methods of detection. Springer, p. 15-49.
    [32]
    Goodge, J.W., Vervoot, J.D., 2006. Origin of Mesoproterozoic A-type granites in Laurentia:Hf isotope evidence. Earth Planet. Sci. Lett. 243, 711-731
    [33]
    Gregory, D.D., Large, R.R., Halpin, J.A., Lounejeva, E., Lyons, T.W., Wu, S., Danyushevsky, L., Sack, P.J., Chapaz, A., Maslennikov, V.V., Bull, S.W., 2015. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 110, 1389-1410
    [34]
    Guadagnin, F., Chemale Jr., F., 2015. Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton. J. S. Am. Earth Sci. 60, 104-116
    [35]
    Guy, B.M., Beukes, N.J., Gutzmer, J., 2010. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. S. Afr. J. Geol. 113, 195-228
    [36]
    Hannington, M.D., de Ronde, C.E.J., Peterson, S., 2005. Sea-floor tectonics and submarine hydrothermal systems. In:Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., (Eds.), 100th Anniversary Volume of Economic Geology, p.111-141.
    [37]
    Hawkesworth, C., Cawood, P.A., Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165-173
    [38]
    Hiess, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2009. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland:New insights to making old crust. Geochim. Cosmochim. Acta 73, 4489-4516
    [39]
    Hofmann, A., 2011. Archaean hydrothermal systems in the Barberton Greenstone Belt and their significance as a habitat for Early Life. In:Golding, S.D., Glikson, M. (Eds.), Earliest Life on Earth:Habitats, Environments and Methods of Detection. Springer, p. 51-78.
    [40]
    Homann, M., Heubeck, C., Airo, A., Tice, M.M., 2015. Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 266, 47-64
    [41]
    Homann, M., Sansjofre, P., Van Zuilen, M., Heubeck, C., Gong, J., Killingsworth, B., Foster, I. S., Airo, A., Van Kranendonk, M. J., Ader, M., Lalonde, S. V., 2018. Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat. Geosci. 11, 665-671
    [42]
    Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27-62
    [43]
    Huston, D.L., Logan, G.A., 2004. Barite, BIFs and bugs:evidence for the evolution of the Earth's early hydrosphere. Earth Planet. Sci. Lett. 220, 41-55
    [44]
    Ickert, R.B., Hiess, J., Williams, I.S., Holden, P., Ireland, T.R., Lanc, P., Schram, N., Foster, J.J., Clement, S.W., 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP-II:Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 257, 114-128
    [45]
    Ireland, T.R., Clement, S., Compston, W., Foster, J.J., Holden, P., Jenkins, B., Lanc, P., Schram, N., Williams, I.S., 2008. Development of SHRIMP. Aust. J. Earth Sci. 55, 937-954
    [46]
    Ireland, T.R., Schram, N., Holden, P., Lanc, P., Ávila, J., Armstrong, R., Amelin, Y., Latimore, A., Corrigan, D., Clement, S., Foster, J.J., Compston, W., 2014. Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. Int. J. Mass Spectrom. 359, 26-37
    [47]
    Jamieson, J.W., Wing, B.A., Farquhar, J., Hannington, M.D., 2013. Neoarchaean seawater sulphate concentrations from Sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61-64
    [48]
    Jenner, F.E., Bennett, V.C., Nutman, A.P., Friend, C.R.L., Norman, M.D., Yaxley, G., 2009. Evidence for subduction at 3.8 Ga:geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chem. Geol. 261, 83-98
    [49]
    Kröner, A., Hoffmann, J.E., Xie, H., Wu, F., Münker, C., Hegner, E., Wong, J., Wan, Y., Liu, D., 2013. Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa. Earth Planet. Sci. Lett. 381, 188-197
    [50]
    Kusky, T.M., Polat, A., 1999. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophys. 305, 43-73
    [51]
    LaFlamme, C., Sugiono, D., Thébaud, N., Caruso, S., Fiorentini, M., Selvaraja, V., Jeon, H., Voute, F., Martin, L., 2018a. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit. Geochim. Cosmochim. Acta 222, 436-446
    [52]
    LaFlamme, C., Fiorentini, M.L., Lindsay, M.D., Bui, T.H., 2018b. Atmospheric sulfur is recycled to the crystalline continental crust during supercontinent formation. Nat. Commun. 9, 4380
    [53]
    Leal, L.R.B., Cunha, J.C., Cordani, U.G., Teixeira, W., Nutman, A.P., Leal, A.B.M., Macambira, M.J.B., 2003. SHRIMP U-Pb, 207Pb/206Pb zircon dating, and Nd isotopic signature of the Umburanas greenstone belt, northern São Francisco craton, Brazil. J. S. Am. Earth Sci. 15, 775-785
    [54]
    Ledru, P., Johan, V., Milési, J.P., Tegyey, M., 1994. Markers of the last stages of the Palaeoproterozoic collision:evidence for a 2 Ga continent involving circum-South Atlantic provinces. Precambrian Res. 69, 169-191
    [55]
    Longerich, H.P., Jackson, S.E., Günther, D., 1996. Laser Ablation Inductively Coupled Plasma Mass Spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atom. Spectrom. 11, 899-904
    [56]
    Lowe, R.D., 1982. Comparative sedimentology of the principal volcanic sequences of Archean Greenstone Belts in South Africa, Western Australia and Canada:Implications for crustal evolution. Precambrian Res. 17, 1-29
    [57]
    Lowe, D.R., Drabon, N., Byerly, G.R., 2019. Crustal fracturing, unconformities, and barite deposition, 3.26-3.23 Ga, Barberton Greenstone Belt, South Africa. Precambrian Res. 327, 34-46
    [58]
    Ludwig, K., 2009. SQUID 2:A User's Manual. Berkeley Geochronology Center, Special Publication 5, 110 p
    [59]
    Ma Q., Xu, Y.G., Huang, X.L., Zheng, J.P., Ping, X., Xia, X.P., 2020. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton:Evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths. Geochim. Cosmochim. Acta 278, 94-109
    [60]
    Magee Jr., C.W., Teles, G., Vicenzi, E.P., Taylor, W., Heaney, P., 2016. Uranium irradiation history of carbonado diamond; implications for Paleoarchean oxidation in the São Francisco craton (South America). Geology 44, 527-530.
    [61]
    Marin-Carbonne, J., Rollion-Bard, C., Bekker, A., Rouxel, O., Agangi, A., Cavalazzi, B., Wohlgemuth-Ueberwasser, C. C., Hofmann, A., McKeegan, K.D., 2014. Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth Planet. Sci. Lett. 392, 67-79
    [62]
    Martin, H., Peucat, J.J., Sabaté, P., Cunha, J.C., 1997. Crustal evolution in the early Archean of South America:example of the Sete Voltas Massif, Bahia State, Brazil. Precambrian Res. 82, 35-62
    [63]
    Mascarenhas, J.F., Silva, E.F.A., 1994. Greenstone Belt de Mundo Novo:Caracterização e implicações metalogenéticas e geotectônicas no Cráton do São Francisco. Companhia Baiana de Pesquisa Mineral, Salvador. Série Arquivos Abertos 5, 32 pp (in Portuguese).
    [64]
    Mascarenhas, J.F., Ledru, P., Souza, S.L., Conceição Filho, V.M., Melo, L.F.A., Lorenzo, C.L., Milesi J.P., 1998. Geologia e recursos minerais do Grupo Jacobina e da parte sul do Greenstone Belt de Mundo Novo. Companhia Baiana de Pesquisa Mineral, Salvador. Série Arquivos Abertos 13, 58 pp (in Portuguese).
    [65]
    Misi, A., Veizer, J., 1998. Neoproterozoic carbonate sequences of the Una Group, Irecê Basin, Brazil:chemostratigraphy, age and correlations. Precambrian Res. 89, 87-100
    [66]
    Misi, A., Kaufman, A.J., Veizer, J., Powis, K., Azmy, K., Boggiani, P.C., Gaucher, C., Teixeira, J.B.G., Sanches, A.L., Iyer, S.S.S., 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chem. Geol. 237, 161-185
    [67]
    Montinaro, A., Strauss, H., Mason, P.R.D., Roerdink, D., Münker, C., Schwarz-Schampera, U., Arndt, N.T., Farquhar, J., Beukes, N.J., Gutzmer, J., Peters, M., 2015. Paleoarchean sulfur cycling:Multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Res. 267, 311-322
    [68]
    Mougeot, R., 1996. Etude de la limite Archéen-Protérozoïque et des minéralisations Au, + U associées. Exemples de la région de Jacobina (Etát de Bahia, Brésil) et de Carajás (Etát de Pará, Brésil). Ph.D. thesis. Université Montpellier II, 306 pp (in French).
    [69]
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., 2016. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere. Proc. Natl. Acad. Sci. 113 (27), 7432-7437
    [70]
    Muller, É., Philippot, P., Rollion-Bard, C., Cartigny, P., Assayag, N., Marin-Carbonne, J., Mohan, M.R., Sarma, D.S., 2017. Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Res. 295, 38-47
    [71]
    Neumann, R., Menezes, R.O.G., Alcover Neto, A., 2002. Caracterização tecnológica da barita de Miguel Calmon, BA. In:Anais do XIX Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Recife, 686-693 (in Portuguese).
    [72]
    Norman, M., Robinson, P., Clarck, D., 2003. Major and trace-element analysis of sulfide ores by Laser-Ablation ICP-MS, Solution ICP-MS, and XRF:New data on international reference materials. Canad. Mineral. 41, 293-305
    [73]
    Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Res. 63, 179-188
    [74]
    Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Chivas, A.R., 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535-538
    [75]
    Oliveira, E.P., McNaughton, N.J., Armstrong, R., 2010. Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna-Salvador-Curaçá orogen, São Francisco craton, Brazil. In:Kusky, T.M., Zhai, M.-G., Xiao, W. (Eds.), The Evolving Continents:Understanding Processes of Continental Growth. Geol. Soc. Lond. Spec. Public. 338, p. 263-286.
    [76]
    Oliveira, E.P., McNaughton, N.J., Zincone, S.A., Talavera, C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga Gneisses of the Mairi Gneiss Complex. Terra Nova 32, 281-298
    [77]
    O'Neil, J., Francis, D., Carlson, R.W., 2011. Implications of the Nuvvuagittuq Greenstone Belt for the formation of Earth's early crust. J. Petrol. 52, 985-1009
    [78]
    Ono, S., Eigendrode, J.L., Pavlov, A.A., Kharecha, P., Rumble III, D., Kasting, J.F., Freeman, K.H., 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15-30
    [79]
    Ono, S., Wing, B., Johnston, D., Farquhar, J., Rumble III, D., 2006. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238-2252
    [80]
    Ono, S., Shanks III, W.C., Rouxel, O.J., Rumble, D., 2007. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta 71, 1170-1182
    [81]
    Paces, J.B., Miller Jr., J.D., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota:Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J. Geophys. Res. Solid Earth 98, 13997-14013
    [82]
    Paris, G., Adkins, J.F., Sessions, A.L., Webb, S.M., Fischer, W.W., 2014. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346, 739-741
    [83]
    Paris, G., Fischer, W.W., Johnson, J.E., Webb, S.M., Present, T.M., Sessions, A.L., Adkins, J.F., 2020. Deposition of sulfate aerosols with positive Δ33S in the Neoarchean. Geochim. Cosmochim. Acta 285, 1-20
    [84]
    Patchett, P.J., Tatsumoto, M., 1981. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol. 75, 263-267
    [85]
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite:Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 26, 2508-2518
    [86]
    Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:Strong evidence for an anoxic Archean atmosphere. Astrobiology 2 (1), 27-41
    [87]
    Pearce, J.A., 2014. Immobile element fingerprinting of ophiolites. Elements 10, 101-108
    [88]
    Peucat, J.J., Mascarenhas, J.F., Barbosa, J.S.F., Souza, S.L., Marinho, M.M., Fanning, C.M., Leite, C.M.M., 2002. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco Craton, Bahia (NE Brazil). J. S. Am. Earth Sci. 15, 363-373
    [89]
    Philippot, P., Ávila, J.N., Killingsworth, B.A., Tessalina, S., Baton, F., Caquineau, T., Muller, E., Pecoits, E., Cartigny, P., Lalonde, S.V., Ireland, T.R., Thomazo, C., Van Kranendonk, M.J., Busigny, V., 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9, 2245
    [90]
    Pidgeon, R.T., Nemchin, A.A., Whitehouse, M.J., 2017. The effect of weathering on U-Th-Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochim. Cosmochim. Acta 197, 142-166
    [91]
    Reis, C., Menezes, R.C.L., Miranda, D.A., Santos, F.P., Loureiro, H.S.C., Neves, J.P., Vieira, R., 2017. ARIM-Serra de Jacobina:Mapa Geológico-Geofísico Escala 1:250.000. Salvador:CPRM, Programa Gestão Estratégica da Geologia, da Mineração e da Transformação Mineral (in Portuguese).
    [92]
    Roerdink, D.L., Mason, P.R.D., Farquhar, J., Reimer, T., 2012. Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth Planet. Sci. Lett. 331-332, 177-186
    [93]
    Santos, D.E., 2011. Geologia e geoquímica dos corpos máficos e ultramáficos da porção sul da serra de Jacobina, cinturão de ouro. Bahia. Trabalho de conclusão de curso. Universidade de Sergipe, pp. 91 (in Portuguese).
    [94]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F. Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., 2017. A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing. Geostand. Geoanal. Res. 41 (3), 335-358
    [95]
    Santos-Pinto, M.A.S., Peucat, J.J., Martin, H., Barbosa, J.S.F., Fanning, C.M., Cocherie, A., Paquette, J.L., 2012. Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil:a 3.5-3.8 Ga proto-crust in the Gavião block? J. S. Am. Earth Sci. 40, 129-142
    [96]
    Shackleton, R.M., 1995. Tectonic evolution of greenstone belts. In:Coward, M.P., Ries, A.C. (Eds.), Early Precambrian Processes. Geol. Soc. Lond. Spec. Public. 95, p. 53-65.
    [97]
    Sharman, E.R., Taylor, B.E., Minarik, W.G., Dubé, B., Wing, B.A., 2015. Sulfur and trace element data from ore sulphides in the Noranda district (Abitibi, Canada):implications for volcanogenic massive sulfide deposit genesis. Miner. Deposita 50, 591-606
    [98]
    Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J., Buick, R., 2009. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383-391
    [99]
    Smithies, R.H., Ivanic, T.J., Lowrey, J.R., Morris, P.A., Barnes, S.J., Wyche, S., Lu, Y.J., 2018. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487, 106-116
    [100]
    Spreafico, R.R., Barbosa, J.S.F., Barbosa, N.S., Moraes, A.M.V., 2019. Tectonic evolution of the Neoarchean Mundo Novo greenstone belt, eastern São Francisco Craton, NE Brazil:Petrology, U-Pb geochronology, and Nd and Sr isotopic constraints. J. S. Am. Earth Sci. 95, 102296
    [101]
    Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 33 (2), 145-168
    [102]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geol. Soc. Lond. Spec. Public 42, 313-345
    [103]
    Teles, G., Chemale Jr., F., Oliveira, C.G., 2015. Paleoarchean record of the detrital pyrite-bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambrian Res. 258, 289-313
    [104]
    Teles, G.S., 2017. Geoquímica Isotópica do Depósito Aurífero da Bacia de Jacobina e dos Sulfetos de Metais Base do Greenstone Belt Mundo Novo, Cráton do São Francisco, e suas Implicações sobre o Paleoarqueano. Ph.D. thesis. Universidade de Brasília, 159 pp (in Portuguese).
    [105]
    Teles, G.S., Chemale Jr., F., Ávila, J.N., Ireland, T.R., Dias, A.N.C., Cruz, D.C.F., Constantino, C.J.L., 2020. Textural and geochemical investigation of pyrite in Jacobina Basin, São Francisco Craton, Brazil:Implications for paleoenvironmental conditions and formation of pre-GOE metaconglomerate-hosted Au-(U) deposits. Geochim. Cosmochim. Acta 273, 331-353
    [106]
    Tessalina, S.G., Bourdon, B., Van Kranendonk, M., Birck, J.L., Philippot, P., 2010. Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nat. Geosci. 3, 214-217
    [107]
    Thomassot, E., O'Neil, J., Francis, D., Cartigny, P., Wing, B.A., 2015. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec). Proc. Natl. Acad. Sci. 112, 707-712
    [108]
    Ueno, Y., Ono, S., Rumble, D., Maruyama, S., 2008. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation:New evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675-5691
    [109]
    Valley, J.W., 2003. Oxygen isotopes in zircon. Rev. Mineral. Geochem. 53, 343-385
    [110]
    Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005. 4.4 billion years of crustal maturation:oxygen isotopes in magmatic zircon. Contrib. Mineral. Petrol. 150, 561-580
    [111]
    Van Kranendonk, M.J., Philippot, P., Lepot, K., Bodorkos, S., Pirajno. F., 2008. Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res. 167, 93-124
    [112]
    Van Kranendonk, M.J., 2010. Two types of Archean continental crust:plume and plate tectonics on early Earth. Amer. J. Sci. 310, 1187-1209
    [113]
    Vermeesch, P., 2018. IsoplotR:a free and open toolbox for geochronology. Geosci. Front. 9, 1479-1493
    [114]
    Wang, X.L., Coble, M.A., Valley, J.W., Shu, X.J., Kitajima, K., Spicuzza, M.J., Sun, T., 2014. Influence of radiation damage on Late Jurassic zircon from southern China:Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chem. Geol. 389, 122-136
    [115]
    Whitehouse, M.J., 2013. Multiple sulfur isotope determination by SIMS:Evaluation of reference sulfides for Δ33S with observations and case study on the determination of Δ36S. Geostand. Geoanal. Res. 37, 19-33
    [116]
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In:McKibben III, M.A., Shanks, W.C.P., Ridley, W.I. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Reviews in Economic Geology 7, 1-35.
    [117]
    Wilson, S.A., Ridley, W.I., Koenig, A.E., 2002. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. Atom. Spectrom. 17, 406-409
    [118]
    Woodhead, J.D., Hergt, J.M., 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res. 29 (2), 169-243
    [119]
    Zhelezinskaia, I., Kaufman, A.J., Farquhar, J., Cliff, J., 2014. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346, 742-744
    [120]
    Zincone, S.A., Oliveira, E.P., Laurent, O., Zhang, H., Zhai, M., 2016. 3.30 Ga high-silica intraplate volcanic-plutonic system of the Gavião Block, São Francisco Craton, Brazil:Evidence of an intracontinental rift following the creation of insulating continental crust. Lithos 266-267, 414-434
    [121]
    Zincone, S.A., Oliveira, E.P., 2017. Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton, Brazil, as a Paleoproterozoic foreland basin. Precambrian Res. 299, 117-131
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (48) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return