Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Lorena Martins, Cristiano Lana, Ariela Mazoz, Tiago Novo. Chemical-Abrasion U-Pb zircon geochronology reveals 150 Myr of partial melting events in the Archean crust of the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101289. doi: 10.1016/j.gsf.2021.101289
Citation: Lorena Martins, Cristiano Lana, Ariela Mazoz, Tiago Novo. Chemical-Abrasion U-Pb zircon geochronology reveals 150 Myr of partial melting events in the Archean crust of the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101289. doi: 10.1016/j.gsf.2021.101289

Chemical-Abrasion U-Pb zircon geochronology reveals 150 Myr of partial melting events in the Archean crust of the São Francisco Craton

doi: 10.1016/j.gsf.2021.101289
Funds:

This work was possible thanks to financial support from the CNPq (National Council for Scientific and Technological Development) under grant 141707/2016-0 to Lorena Martins, and the financial support provided by CNPq awarded to Cristiano Lana. Ana Alkmim and Dé

bora Vasconcelos are thanked for instrumental tunning during this work. To the Microanalysis Laboratory of the Universidade Federal de Ouro Preto, a member of the Microscopy and Microanalysis Network of Minas Gerais State/Brazil/FAPEMIG, for the CL images.

  • Received Date: 2020-12-28
  • Accepted Date: 2021-08-18
  • Rev Recd Date: 2021-06-25
  • Publish Date: 2021-08-21
  • Field observations and CA-LA-ICP-MS U-Pb zircon ages and Hf isotope compositions obtained from migmatitic orthogneisses and granitoids from the Belo Horizonte Complex, southern São Francisco Craton, indicate a major period of partial melting and production of felsic rocks in the Neoarchean. Our observations show that the complex is an important site for studying partial melting processes of Archean crystalline crust. Much of the complex exposes fine-grained stromatic migmatites that are intruded by multiple leucogranitic veins and sheeted dikes. Both migmatites and leucogranite sheets are crosscut by several phases of granitoid batholiths and small granitic bodies; both of which are closely associated with the host banded gneisses. Chemical abrasion followed by detailed cathodoluminescence imaging revealed a wide variety of zircon textures that are consistent with a long-lived period of partial melting and crustal remobilization. Results of U-Pb and Hf isotopes disclose the complex as part of a much wider crustal segment, encompassing the entire southern part of the São Francisco Craton. Compilation of available U-Pb ages suggests that this crustal segment was consolidated sometime between 3000 Ma and 2900 Ma and that it experienced three main episodes of partial melting before stabilization at 2600 Ma. The partial melting episodes took place between 2750 Ma and 2600 Ma as a result of tectonic accretion and peeling off the lithospheric mantle and lower crust. This process is likely responsible for the emplacement of voluminous potassic granitoids across the entire São Francisco Craton. We believe that the partial melting of Meso-Archean crystalline crust and production of potassic granitoids are linked to a fundamental shift in the tectonics of the craton, which was also responsible for the widespread intrusion of large syenitic bodies in the northern part of the craton, and the construction of layered mafic-ultramafic intrusions to the south of the BHC.
  • loading
  • [1]
    Aguilar, C., Alkmim, F. F., Lana, C., Farina, F., 2017. Paleoproterozoic assembly of the São Francisco craton, SE Brazil:new insights from U-Pb titanite and monazite dating. Precambrian Res. 289, 95-115
    [2]
    Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., Martínez Dopico, C., 2016. Archean crustal evolution in the Southern São Francisco craton, Brazil:constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos 266-267, 64-86
    [3]
    Alkmim, F.F., 2004. O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações Almedianas ao delimita-lo. In:Mantesso-Neto et al. (Eds.), Geologia do Continente Sul-Americano. Evolução da obra de Fernando Flávio Marques de Almeida. Becca, São Paulo, pp.17-35 (in Portuguese with English abstract).
    [4]
    Alkmim, F.F., Marshak, S., 1998. Transamazonian orogeny in the southern São Francisco craton region, Minas Gerais, Brazil:evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res. 90, 29-58
    [5]
    Alkmim, F.F., Martins-Neto, M.A., 2012. Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Mar. Petrol. Geol. 3,127-139
    [6]
    Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A., 1981. Brazilian structural provinces:an introduction. Earth-Sci. Rev. 17, 1-29
    [7]
    Babinski, M., Vieira, L.C., Trindade R.I.F., 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova 19, 401-406
    [8]
    Baltazar, O.F., Zucchetti, M., 2007. Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil:a review of the setting of gold deposits. Ore Geol. Rev. 32, 471-499
    [9]
    Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco craton, Bahia, Brazil:geodynamic features. Precambrian Res. 133, 1-27
    [10]
    Barbosa, N., Teixeira, W., Leal, L.R.B., Leal, A.B.M., 2013. Evolução crustal do setor ocidental do Bloco Arqueano Gavião, Cráton do São Francisco, com base em evidências U-Pb, Sm-Nd e Rb-Sr. Geologia USP. Série Cientifica 13, 63-88 (in Portuguese with English abstract)
    [11]
    Barbosa, R.G., Lana, C.C., Zincone, S.A., 2020. Paleoproterozoic granitic magmatism in the northern São Francisco Craton, NE Brazil:New perspectives from geochemistry, zircon U-Pb geochronology and Hf isotopes. J. S. Am. Earth Sci. 103, 103004
    [12]
    Bastos-Leal, L.R., Cunha, J.C., Cordani, U.G., Teixeira, W., Nutman, A., Menezes-Leal, A.B., Macambira, M.J.B., 2003. SHRIMP U-Pb, 207Pb/206Pb zircon dating and Nd isotopic signature of the Umburanas greenstone belt, Northern São Francisco Craton, Brazil. J. S. Am. Earth Sci. 15, 775-785
    [13]
    Bauer, A.M., Vervoort, J.D., Fisher, C.M., 2020. Unraveling the complexity of zircons from the 4.0-2.9 Ga Acasta Gneiss Complex. Geochem. Cosmochim. Acta 283, 85-102
    [14]
    Black L.P., Gulson, B.L., 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. J. Aust. Geol. Geophys. 3, 227-232
    [15]
    Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J. Foudoulis, C., 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200, 155-170
    [16]
    Blichert-Toft, J., Puchtel, I.S., 2010. Depleted mantle sources through time:evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. Earth Planet. Sci. Lett. 297(3-4), 598-606
    [17]
    Bose, S., Ghosh, G., Kawaguchi, K., Das, K., Mondal, A. K., Banerjee A., 2021. Zircon and monazite geochronology from the Rengali-Eastern Ghats Province:Implications for the tectonic evolution of the eastern Indian terrane. Precambrian Res. 355, 106080
    [18]
    Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48-57
    [19]
    Campos, J.C.S., Carneiro, M.A., 2008. Neoarchean and Paleoproterozoic granitoids marginal to the Jeceaba-Bom Sucesso lineament (SE border of the southern São Francisco craton):Genesis and tectonic evolution. J. S. Am. Earth Sci. 26, 463-484
    [20]
    Campos, J.C.S., Carneiro, M.A., Basei, M.A.S., 2003. U-Pb evidence for Late Neoarchean crustal reworking in the southern São Francisco Craton (Minas Gerais, Brazil). An. Acad. Bras. Ciênc. 75(4), 497-511
    [21]
    Carneiro, M.A., 1992. O Complexo Metamórfico Bonfim Setentrional (Quadrilátero Ferrífero, Minas Gerais):Litoestratigrafia e evolução geológica de um segmento de crosta continental do Arqueano. Unpublished Ph.D. Thesis, Universidade de São Paulo, 233 pp.
    [22]
    Carneiro, M.A., Jordt-Evangelista, H., Teixeira, W., 1997. Eventos magmáticos arqueanos de natureza cálcio-alcalina e tholeíitica no Quadrilátero Ferrífero e suas implicações tectônicas. Rev. Bras. Geociênc. 27, 121-128
    [23]
    Carvalho, B.B., Sawyer, E.W., Janasi, V.A., 2016. Crustal reworking in a shear zone:transformation of metagranite to migmatite. J. Metamorph. Geol. 34, 237-264
    [24]
    Carvalho, B.B., Janasi, V.A., Sawyer, E.W., 2017. Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil:a dating and isotopic study of the Kinawa migmatite. Precambrian Res. 291, 98-118
    [25]
    Champion, D.C., Sheraton, J.W., 1997. Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia:implications for crustal growth processes. Precambrian Res. 83 (1-3), 109-132
    [26]
    Champion, D.C., Smithies, R.H., 1999. Archaean granites of the Yilgarn and Pilbara cratons, Western Australia:secular changes. In:Barbarin, B. (Ed.), The Origin of Granites and Related Rocks-IVth Hutton Symposium Abstracts Doc. BRGM 290, pp. 134-137.
    [27]
    Chemale, F., Babinski, M., Van Schmus, W. R., 1993. U/Pb dating of granitic-gneissic rocks from the Belo Horizonte and Bonfim complexes, Quadrilátero Ferrífero (Brazil). Report for CNPq and NSFEAR Project on São Francisco Craton Margin Transect Project, p.16
    [28]
    Chowdhury, P., Chakraborty, S., 2019. Slow cooling at higher temperatures recorded within high-P mafic granulites from the Southern Granulite Terrain, India:im-plications for the presence and style of plate tectonics near the Archean-Proterozoic boundary. J. Petrol. 60, 441-486
    [29]
    Chowdhury, P., Gerya, T., Chakraborty, S., 2017. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nat. Geosci.10, 698-703
    [30]
    Chowdhury, P., Chakraborty, P., Gerya, T.V., Cawood, P.A., Capitanio, F.A., 2020. Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism. Earth Planet. Sci. Lett. 538, 116224
    [31]
    Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom. 17, 1567-1574
    [32]
    Claesson, S., Bibikova, E.V., Shumlyanskyy, L., Whitehouse, M.J., Billström, K., 2016. Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield. Precambrian Res. 273, 1-11
    [33]
    Clark, C., Taylor, R.J.M., Kylander-Clark, A.R.C., Hacker, B.R., 2018. Prolonged (>100 Ma) ultrahigh temperature metamorphism in the Napier Complex, East Antarctica:a petrochronological investigation of Earth's hottest crust. J. Metamorph. Geol. 36, 1117-1139
    [34]
    Corfu, F., Ayres, L.D., 1984. U-Pb ages and genetic significance of heterogeneous zircon populations in rocks from the Favourable Lake area, northwestern Ontario. Contrib. Mineral. Petr. 88, 86-101
    [35]
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. Rev. Mineral. Geochem 53, 469-500
    [36]
    Crowley, Q.G., Heron, K., Riggs, N., Kamber, B., Chew, D., McConnell, B., Benn, K., 2014. Chemical abrasion applied to LA-ICP-MS U-Pb zircon geochronology. Fortschr. Mineral. 4, 503-518
    [37]
    Cruz, S.C.P., Peaucat, J.J., Teixeira, L., Carneiro, M.A., Martins, A.A.M., Santana, J.S.S., Souza, J.S., Barbosa, J.S.F., Leal, A.B.M., Dantas, E., Pimentel, M., 2011. The Caraguataí syenitic suite, a ca. 2.7 Ga-old alkaline magmatism (petrology, geochemistry and U/Pb zircon ages). Southern Gavião block (São Francisco Craton), Brazil. J. S. Am. Earth Sci. 37, 95-112
    [38]
    Cruz, S. C. P., Barbosa, J. S. F., Pinto, M. S., Peucat, J-J., Paquette, Souza, J. S., Martins, V. S., Chemale Jr, F., Carneiro, M. A., 2016. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil:U-Pb geochronology, geochemistry and tectonic implications, J. S. Am. Earth Sci. 69, 43-79
    [39]
    Cutts, K., Lana, C.C., Alkmim, F.F.A., Farina, F., Moreira, H.S., Coelho, V., 2019. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10, 1765-1787
    [40]
    Dall'Agnol, R., Oliveira, M.A., Almeida, J.A.C., Althoff, F.J., Leite, A.A.S., Oliveira, D.C., Barros, C.E.M., 2006. Archean and Paleoproterozoic granitoids of the Carajás metallogenetic province, eastern Amazonian craton. In:Dall'Agnol, R., Rosa-Costa, L.T., Klein, E.L. (Eds.), Symposium on Magmatism.:Crustal Evolution, and Metallogenesis of the Amazonian Craton. Abstracts Volume and Field Trips Guide. Belém, PRONEX-UFPA/SBGNO. PRONEX-UFPA/SBGNO, Belém, pp. 99-150.
    [41]
    Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci.8, 552-555
    [42]
    Dorr II, J.V.N., 1969. Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. U.S. Geol. Surv. Prof. Paper 641-A, 1-110.
    [43]
    Farina, F., Albert, C., Lana, C., 2015a. The Neoarchean transition between medium-and high-K granitoids:clues from the southern São Francisco craton (Brazil). Precambrian Res. 266, 375-394
    [44]
    Farina, F., Albert, C., Martinez-Dopico, C., Aguilar Gil, C., Moreira, H., Hippertt, J., Cutts, K., Lana, C., Alkmim, F.F., 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil):current models and open questions. J. S. Am. Earth Sci. 68, 4-21
    [45]
    Feng, R., Kerrich, R., 1992. Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Province, Canada:implications for tectonic history and source regions. Chem. Geol. 98, 23-70
    [46]
    Ferreira, A. C. D., Dantas, E.L., Fuck, R. A., Nedel, I. M., 2020. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil. Sci Rep 10, 7855
    [47]
    Frost, C.D., Frost, B.R., Chamberlain, K.R., Huselbosch, T.P., 1998. The Late Archaean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Res. 98, 145-173
    [48]
    Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 43-50
    [49]
    Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons:comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 249:47-61
    [50]
    Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration-New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 261, 230-243
    [51]
    Goulart, L.E.A., Carneiro, M.A., Endo I., Suita, M.T.F., 2013. New evidence of Neoarchean crustal growth in southern São Francisco Craton:the Carmópolis de Minas Layered Suite, Minas Gerais, Brazil. Braz. J. Geol. 43, 445-459
    [52]
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.V., Van Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64, 133-147
    [53]
    Hartmann, L.A., Endo, I., Suita, M.T.F., Santos, J.O.S., Frantz, J.C., Carneiro, M.A., McNaughton, N.J., Barley, M.E., 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstone based on zircon U-Pb isotopes. J. S. Am. Earth Sci. 20, 273-285
    [54]
    Heilbron, H., Cordani, U., Alkmim, F., Reis, H., 2017. Tectonic genealogy of a miniature continent. In:Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Springer, Cham, pp. 321-331
    [55]
    Herz, N., 1970. Gneissic and igneous rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. U.S. Geol. Surv. Prof. Paper 641-B, B1-B58
    [56]
    Hoskin, P.W.O., Black, L.P., 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol.18, 423-439
    [57]
    Huyskens, M. H., Zink, S., Amelin, Y., 2016. Evaluation of temperature-time conditions for the chemical abrasion treatment of single zircons for U-Pb geochronology. Chem. Geol. 438, 25-35
    [58]
    Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69
    [59]
    Kampunzu, A.B., Tombale, A.R., Zhai, M., Bagai, Z., Majaule, T., Modisi, M.P., 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana:evidence for a Neoarchean continental active margin in the Zimbabwe craton. Lithos 71, 431-460
    [60]
    Käpyaho, A., Mänttäri, I., Huhma, H., 2006. Growth of Archaean crust in the Kuhmo district, Eastern Finland:U-Pb and Sm-Nd isotope constraints on plutonic rocks. Precambrian Res. 146, 95-119
    [61]
    Koglin, N., Zeh, A., Cabral, A.R., Gomes Jr., A.A.S., Neto, A.V.C., Brunetto, W.J., Galbiatti, H., 2014. Depositional age and sediment source of the auriferous Moeda Formation, Quadrilátero Ferrífero of Minas Gerais Brazil:new constraints from U-Pb-Hf isotopes in zircon and xenotime. Precambrian Res. 255, 96-108.
    [62]
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini, H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 230, 1-30
    [63]
    Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late-Archean granitoids:evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208-235
    [64]
    Ledru, P., Johan, V., Milesi, J.P., Tegyey, M., 1994. Evidence for a 2 Ga continental accretion in the circum-south Atlantic provinces. Precambrian Res. 69, 169-191
    [65]
    Ludwig, K.R., 2012. Isoplot Version 3.75:a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA, p.75.
    [66]
    Machado, N., Carneiro, M.A., 1992. U-Pb evidence of the late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can. J. Earth Sci. 29, 2341-2346
    [67]
    Machado, N., Noce, C.M., Ladeira, E.A., de Oliveira, O.A.B., 1992. U-Pb geochronology of the Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco craton, Brazil. Geol. Soc. Am. Bull. 104, 1221-1227
    [68]
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:implications for Greenstone Belt setting evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet. Sci. Lett.141, 259-276
    [69]
    Martínez-Dopico, C.I., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161.
    [70]
    Mattinson, J.M., 2005. Zircon U-Pb chemical abrasion ("CA-TIMS") method:combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220 (1-2), 47-66
    [71]
    Mikkola, P., Huhma, H., Heilimo, E., Whitehouse, M., 2011. Archean crustal evolution of the Suomussalmi district as part of the Kianta Complex, Karelia:constraints from geochemistry and isotopes of granitoids. Lithos 125, 287-307
    [72]
    Moreira, H.; Lana, C.; Nalini Jr., H.N., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Res. 275, 84-99
    [73]
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231-235
    [74]
    Moreno, J.A., Baldim, M.R., Semprich, J., Oliveira, E.P., Verma, S.K., Teixeira, W., 2017. Geochronological and geochemical evidences for extension-related Neoarchean granitoids in the southern São Francisco Craton, Brazil. Precambrian Res. 294, 322-343
    [75]
    Moyen, J.F., Martin, H., Jayananda, M., Auvray, B., 2003. Late Archaean granites:a typology based on the Dharwar Craton (India). Precambrian Res. 127, 103-123
    [76]
    Moyen, J.F., Laurent, O., 2018. Archaean tectonic systems:a view from igneous rocks. Lithos, 302, 99-125
    [77]
    Nebel, O., Capitanio, F.A., Moyen, J.F., Weinberg, R.F., Clos, F., Nebel-Jacobsen, Y.J., Cawood, P.A., 2018. When crust comes of age:on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Philos. Trans. -Royal Soc. A, Math. Phys. Eng. Sci.376 (2132), 20180103
    [78]
    Noce, C.M., 1995. Geocronologia dos eventos magmáticos, sedimentares e metamórficos na região do Quadrilátero Ferrífero, Minas Gerais. Unpublished Ph.D. Thesis, Universidade de São Paulo, 129 pp
    [79]
    Noce, C.M., Machado, N., Teixeira, W., 1998. U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco craton):age constraints for Archean and Paleoproterozoic magmatism and metamorphism. Rev. Bras. Geociênc. 28, 95-102
    [80]
    Noce, C.M., Teixeira, W., Quemeneur, J.J.G., Martins, V.T.S., Bolzachini, E., 2000. Isotopic signatures of Paleoproterozoic granitoids from the southern São Francisco craton and implications for the evolution of the Transamazonian orogeny. J. S. Am. Earth Sci. 13, 225-239
    [81]
    Noce, C.M., Zuccheti, M., Baltazar, O.F., Armstrong, R., Dantas, E., Renger, F.E., Lobato, L.M., 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil):U-Pb zircon dating of volcaniclastic graywackes. Precambrian Res. 141, 67-82
    [82]
    Oliveira, A.H., 2004. Evolução tectônica de um fragmento do Cráton São Francisco Meridional com base em aspectos estruturais, geoquímicos (rocha total) e geocronológicos (Rb-Sr, Sm-Nd, Ar-Ar, U-Pb). Ph.D. Thesis, Universidade Federal de Ouro Preto, 136pp.
    [83]
    Oliveira, E.P., Windley, B.F., Araújo, M.N.C., 2010. The Neoproterozoic Sergipano orogenic belt, NE Brazil:a complete plate tectonic cycle in western Gondwana. Precambrian Res. 181, 64-84
    [84]
    Oliveira E.P., McNaughton, N. J., Zincone, S. A., Talavera, C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga Gneisses of the Mairi Gneiss Complex. Terra Nova 32, 281-289
    [85]
    Pons, M.L., Fujii, T., Rosing, M., Quitté, G.,Télouk, P., Albarède, F., 2013. A Zn isotope perspective on the rise of continents. Geobiology 11, 201-214
    [86]
    Romano, A.W., 1989. Evolution tectonique de la région NW du Quadrilatère Ferrifère-Minas Gerais, Brésil. Unpublished Ph.D. Thesis, University of Nancy, France, 259pp
    [87]
    Romano, R., Lana, C., Alkmim, F.F., Stevens, G., Armstrong, R., 2013. Stabilization of the Southern São Francisco Craton, SE Brazil, through a long-lived and episodic period of potassic magmatism. Precambrian Res. 224,1-20
    [88]
    Sage, R.P., Lightfoot, P.C., Doherty, W., 1996. Geochemical characteristics of granitoid rocks from within the Archean Michipicoten Greenstone Belt, Wawa Subprovince, Superior Province, Canada:implications for source regions and tectonic evolution. Precambrian Res. 76, 155-190
    [89]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., 2017. A new appraisal of Sri Lankan zircons as reference material for in situ U-Pb geochronology, REE analyses and Lu-Hf isotope tracing. Geostand. Geoanal. Res. 41, 335-358
    [90]
    Santos-Pinto, M.A.S., Peucat, J.J., Martin, H., Barbosa, J.S.F., Fanning, C.M., Cocherie A., Paquette, J.L., 2012. Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil:a 3.5-3.8 Ga proto-crust in the Gavião block? J. S. Am. Earth Sci. 40,129-142
    [91]
    Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science, 293, 683-686
    [92]
    Schofield, D.I., Thomas, R.J., Goodenough, K.M., de Waele, B., Pitfield, P.E.J., Key, R.M., Bauer, W., Walsg, G.J., Lidke, D.J., Ralison, A.V., Rabarimanana, M., Rafahatelo, J.M., Randriamananjara, T., 2010. Geological evolution of the Antogil Craton, NE Madagascar. Precambrian Res. 182, 187-203
    [93]
    Schrank, A., Machado, N., 1996. Idades U-Pb em monazitas e zircões do distrito aurífero de Caeté, da Mina de Cuiabá e do Depósito de Carrapato, Quadrilátero Ferrífero (MG). Anais 39th Congr. Bras. Geol., Salvador, Soc. Bras. Geol. v. 6, p. 473-475.
    [94]
    Silva, L.C., Pedrosa-Soares, A.C., Dussin, I., Armstrong, R.., Noce, C.M., 2012 a. O Complexo Belo Horizonte de Carlos Noce revisitado. Open file (ppt) report, http://www.46cbg.com.br/0110/sala3/10h10_luiz_carlos_01-10_sl03.ppt.pdf.
    [95]
    Simon, M. B., Bongiolo, E. M., Ávila, C. A., Oliveira, E.P., Teixeira, W., Stohler, R.C., Soares de Oliveira, F.V., 2018. Neoarchean reworking of TTG-like crust in the southernmost portion of the Sao Francisco Craton:U-Pb zircon dating and geochemical evidence from the Sao Tiago Batholith. Precambrian Res. 314, 353-376
    [96]
    Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35
    [97]
    Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311-324
    [98]
    Sylvester, P.J., 1994. Archaean granite plutons. In:Condie, K.C. (Ed.), Archaean Crustal Evolution. Developments in Precambrian Geology, vol. 11. Elsevier, Amsterdam, pp. 261-314.
    [99]
    Taylor, S. R., McLennan, S. M., 1995. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241-265
    [100]
    Taylor, R.J.M., Johnson, T.E., Clark, C., Harrison, R.J., 2020. Persistence of melt-bearing Archean lower crust for >200 m.y.-an example from the Lewisian Complex northwest Scotland. Geology 48, 221-225
    [101]
    Teixeira, W., Caneiro, M.A., Noce, C.M., Machado, N., Sato, K., Taylor, P.N., 1996. Pb, Sr and Nd isotope constraints on the Archaean evolution of gneissic-granitoid complexes in the southern São Francisco Craton, Brazil. Precambrian Res. 78, 151-164
    [102]
    Teixeira, W., Cordani U.G., Nutman, A.P., Sato, K., 1998. Polyphase Archean evolution in the Campo Belo metamorphic Complex, Southern São Francisco Craton, Brazil:SHRIMP U-Pb zircon evidence. J. S. Am. Earth Sci. 11 (3):279-289
    [103]
    Teixeira, W., Figueiredo, M.C.H., 1991. An outline of Early Proterozoic crustal evolution in the Sao Francisco craton, Brazil:a review. Precambrian Res. 53, 1-22
    [104]
    Teixeira, W., Sabaté, P., Barbosa, J., Noce, C.M., Carneiro, M.A., 2000. Archean and Paleoproterozoic tectonic evolution of the São Francisco Craton. In:Cordani UG, Milani EJ, Thomaz-Filho A, Campos DA (Eds.), Tectonic Evolution of South America. 31st IGC, pp. 101-137.
    [105]
    Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W.L., 2001. Data reduction software for LA-ICP-MS:appendix. Assoc. Canada (MAC) Short Course Series 29, p. 239.
    [106]
    Wedepohl, K.H., 1995. The composition of the continental crust. Geochem. Cosmochim. Ac. 59(1), 217-239
    [107]
    Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newslett. 19, 1- 23
    [108]
    Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J.W., Whitehouse, M.J., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franch,i I., Girard, J.P., Greenwood, R.C., Hinton, R., Kita N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, R., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skar, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.F., 2004. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9-39.
    [109]
    Wiedmann, P., Davies, J.H.F.L., Schaltegger, U., 2019. Calibrating chemical abrasion:Its effects on zircon crystal structure, chemical composition and U-Pb age. Chem. Geol. 511, 1-10
    [110]
    Wiemer, D., Allen, C., Murphy, D., Kinaev, I., 2017. Effects of thermal annealing and chemical abrasion on ca. 3.5 Ga metamict zircon and evidence for natural reverse discordance:Insights for U-Pb LA-ICP-MS dating. Chem. Geol. 466, 285-302
    [111]
    Woodhead, J.D., Hergt, J.M., 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res. 29, 183-195
    [112]
    Xia, Q.X., Zheng, Y.F., Yuan, H., Wu, F.Y., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos 112, 477-496
    [113]
    Yang, J.H., Wu, F.Y., Wilde, S.A., Zhao, G., 2008. Petrogenesis and geodynamics of Late-Archaean magmatism in eastern Hebei, eastern North China Craton:geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Res. 167, 125-149
    [114]
    Zincone, S.A., Oliveira, E. P., Ribeiro, B. P., Marinho, M. M., 2020. High-K granites between the Archean Gavião and Jequié blocks, São Francisco Craton, Brazil:Implications for cratonization and amalgamation of the Rhyacian Atlantica continent. J. S. Am. Earth Sci. 103, 102920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return