Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
W. Teixeira, C.A. Ávila, I.A. Dussin, E. Bongiolo. U-Pb provenance fingerprints of metavolcanic-sedimentary successions of the Mineiro belt: Proxies for the continuity of plate tectonics through the Paleoproterozoic[J]. Geoscience Frontiers, 2022, 13(5): 101293. doi: 10.1016/j.gsf.2021.101293
Citation: W. Teixeira, C.A. Ávila, I.A. Dussin, E. Bongiolo. U-Pb provenance fingerprints of metavolcanic-sedimentary successions of the Mineiro belt: Proxies for the continuity of plate tectonics through the Paleoproterozoic[J]. Geoscience Frontiers, 2022, 13(5): 101293. doi: 10.1016/j.gsf.2021.101293

U-Pb provenance fingerprints of metavolcanic-sedimentary successions of the Mineiro belt: Proxies for the continuity of plate tectonics through the Paleoproterozoic

doi: 10.1016/j.gsf.2021.101293
Funds:

o Paulo State Research Foundation-FAPESP (2004/15295-7 and 2009/53818-5) and the National Council of Technological and Scientific Development-CNPq (5092018/Edital Universal) provided partial funding of the research. CAA thanks the Rio de Janeiro State Research Foundation (FAPERJ) for financial support. WT, CAA, EB, and IAD are grateful to the CNPq for the Research Productivity Scholarships. This paper represents a contribution to the CNPq working group Evolution of Cratonic Terranes managed by WT. We appreciate the time invested by the reviewers, particularly Dr. Inê

The authors acknowledge the analytical support of the Geochronological Research Center (CPGeo) of the University of Sã

o Paulo, Brazil. Grants of the Sã

s Pereira, and editorial staff in helping improve our manuscript.

  • Received Date: 2020-10-13
  • Accepted Date: 2021-08-24
  • Rev Recd Date: 2021-07-17
  • Publish Date: 2021-08-26
  • We document new U-Pb detrital zircon LA-MC-ICP-MS data for seven metavolcanic-sedimentary successions and metasedimentary sequences and reassess additional dates of five siliciclastic samples toward their tectonic significance in the context of the Mineiro belt, Southern São Francisco Craton. This belt represents a crustal segment of the 2.47-2.00 Ga Minas Orogen, classically known by its Siderian and Rhyacian juvenile rocks with important implications in the Earth's geodynamics. The new and compiled detrital provenance constraints unravel the long-lived magmatic and sedimentary history of the studied basins, lasting ca. 230-220 Myr. The maximum depositional dates around 2.1 Ga reflect the renewed sediment budget with the subsequent metamorphic episode ca. 2.0 Ga. Most of the unmixed relative probability diagrams are consistent with sourcing from the Siderian and Rhyacian arcs of the Mineiro belt, determining a detrital provenance change in time and space for the precursor basins. Alternative potential sources could be the youngest rocks of the Mantiqueira and Juiz de Fora terranes that constitute the other segments of the Minas Orogen, given the age match. The overall detrital fingerprints determine the study basins resumed mainly in Rhyacian fore-arc and/or back-arc settings, i.e., akin to a subduction-related system that evolved to a collisional (foreland) environment. Few samples show fingerprints of primary extensional settings, determined by major Archean detrital populations sourced from areas outside the Mineiro belt beside the Paleoproterozoic detritus. The working model considers the collage between the Mineiro belt and the ancient foreland around 2.10 Ga and eventual interaction with other crustal segments of the Minas Orogen, generating the ca. 2.0 Ga metamorphism over the metasedimentary samples. The more complete isotopic repository in detrital and igneous zircon grains for the studied supracrustal successions and the associated rocks allows new insights into the Rhyacian-Orosirian dynamics of the Minas orogeny. In a broader perspective, the juvenile nature of the Mineiro belt reinforces the paradigm of uninterrupted continental growth during the Paleoproterozoic Earth.
  • loading
  • [1]
    Aguilar, C., Alkmim, F.F., Lana, C., Farina, F., 2017. Palaeoproterozoic assembly of the São Francisco craton, SE Brazil:new insights from U-Pb titanite and monazite dating. Precambrian Res. 289, 95-115
    [2]
    Alkmim, F.F., Teixeira, W., 2017. The paleoproterozoic Mineiro belt and the Quadrilátero Ferrífero. In:Heilbron, M., Alkmim, F., Cordani, U.G. (Eds.), The São Francisco Craton and its Margins, Eastern Brazil, Geology Review Series. Springer-Verlag, pp. 71-94. doi.org/10.1007/978-3-319-01715-0_5. Chapter 5.
    [3]
    Araújo, A.J.D., Bongiolo, E.M., Ávila, C.A., 2019a. The Southern São Francisco Craton Puzzle:Insights from Aerogeophysical and Geological Data. J. S. Am. Earth Sci., 94:102203. doi. org/10.1016/j.jsames.2019.05.019
    [4]
    Araújo, L.E.A.B., Heilbron, M., Valeriano, C.M., Teixeira, W., Neto, C.C.A., 2019b. Lithogeochemical and Nd-Sr isotope data of the orthogranulites of the Juiz de Fora complex, SE-Brazil:insights from a hidden Rhyacian Orogen within the Ribeira belt. Braz. J. Geol. 49 (3), e20190007
    [5]
    Araújo, L.E.A.B., Heilbron, M., Teixeira, W., Dussin, I.A., Valeriano, C., Bruno, H., Sato, K., Paravidini, G., Castro, M., 2021. Siderian to Rhyacian evolution of the Juiz de Fora Complex:Arc fingerprints and correlations within the Minas-Bahia Orogen and the Western Central Africa Belt. Precam. Res. 359. doi.org/10.1016/j.precamres.2021.106118
    [6]
    Ávila, C.A., Teixeira, W., Cordani, U. G., Barrueto, H.R., Pereira, R.M., Martins, V.T.S, Dunuy, L., 2006. The gloria quartz-monzodiorite:isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais state, Brazil. An. Acad. Bras. Cienc. 78, 543-556
    [7]
    Ávila, C.A., Teixeira, W., Cordani, U.G., Moura, C.A.V., Pereira, R.M., 2010. Rhyacian (2.23-2.20 Ga) juvenile accretion in the southern São Francisco Craton, Brazil:geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt. J. S. Am. Earth Sci. 29, 464-482
    [8]
    Ávila, C.A., Teixeira, W., Bongiolo, E.M., Dussin, I.A., Vieira, T.A.T., 2014. Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segment of the Mineiro belt, São Francisco Craton, Brazil. Precambrian Res. 243, 221-251
    [9]
    Ávila, C.A., Bongiolo, E.M., Vasques, F.S.G, Souza, A. N. de, Seoane, J.C.S., Ritins, J.I.V., Vilela, F.T., Pinheiro, M.A.P., Vasconcelos, F.F. de, Cardoso, C.D., Silveira, V.S.L., Silva, P.R.S. da, Simon, M.B., Faulstich, F. R.L., Piores, F.L.,C., Stohler, R.C., Oliveira, F.V.C.S.R.S. de, Tedeschi, M.F., 2019. Projeto ARIM:Reavaliação das Sequências Metavulcanossedimentares a Sudoeste do Quadrilátero Ferrífero:Mapa Geológico Integrado, escala 1:100.000. Belo Horizonte:Serviço Geológico do Brasil-CPRM.
    [10]
    Baldim, M.R., Oliveira, E.P., 2021. Northeast São Francisco Craton and West-Congo Craton linked before the Rhyacian (2.10-2.04 Ga) orogeny:Evidences from provenance and U-Pb ages of supracrustal rocks from the Rio Capim greenstone belt, Serrinha Block. Precambrian Res. 352, 105985. doi.org/10.1016/j.precamres.2020.105985
    [11]
    Baltazar, O.F., Zucchetti, M., 2007. Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil:a review of the regional setting of gold deposits. Ore Geol. Rev. 32, 471-499
    [12]
    Barbosa, J.S.F., Barbosa, R.G., 2017. The Paleoproterozoic eastern Bahia orogenic domain. In:Heilbron, M., Alkmim, F., Cordani, U.G. (Eds.), The São Francisco Craton and its margins, Eastern Brazil, Regional Geology Review Series. Springer-Verlag, pp. 57-69. dx.doi.org/10.1007/978-3-319-01715-0_4. Chapter 4.
    [13]
    Barbosa, N.S., Teixeira, W., Avila, C.A., Montecinos, P.M., Bongiolo, E.M., 2015. 2.17-2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil:U-Pb ages, geochemical constraints and tectonics. Precambrian Res. 270, 204-225
    [14]
    Barbosa, N., Teixeira, W., Ávila, C.A., Montecinos, P.M., Bongiolo, E.M., Vasconcelos, F.F., 2019. U-Pb geochronology and coupled Hf-Nd-Sr isotopic chemical constraints of the Cassiterita Orthogneiss (2.47-2.41 Ga) in the Mineiro belt, São Francisco craton:Geodynamic fingerprints beyond the Archean-Paleoproterozoic Transition. Precambrian Res. 326, 399-416. doi.org/10.1016/j.precamres.2018.01.017
    [15]
    Barbosa, N., Menezes Leal, A.B., Debruyne, D., Bastos Leal, L.R., Barbosa, N.S., Mercês, L., Barbosa J.S., Koproski, L.M., 2020. Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi-Correntina block (GCB), north São Francisco Craton, Brazil, unraveled by U-Pb Geochronology, Nd-Sr isotopes and geochemical constraints. Precambrian Res. 340, 105614. doi.org/10.1016/j.precamres.2020.105614
    [16]
    Barros, R.A, Caxito, F.A., Egydio-Silva, M., Dantas, E.L., Piacentini, M.A.P., Rodrigues, J.B., Basei, M.A.S., Virgens-Neto, J., Freitas, M.S., 2020. Archean and Paleoproterozoic crustal evolution and evidence for cryptic Paleoarchean-Hadean sources of the NW São Francisco Craton, Brazil:lithochemistry, geochronology, and isotope systematics of the Cristalândia do Piauí Block. Gondwana Res. 88, 268-395. doi.org/10.1016/j.gr.2020.07.004
    [17]
    Bruno, H., Elizeu, V., Heilbron, M., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Dussin, I., Silva, L.G.E., Tupinambá, M., Almeida, J., Neto C., Storey, C., 2020. Neoarchean and Rhyacian TTG-Sanukitoid suites in the southern São Francisco Paleocontinent, Brazil:Evidence for diachronous change towards modern tectonics. Geosci. Front. 11(5), 1763-1787. doi.org/10.1016/j.gsf.2020.01.015
    [18]
    Bruno, H., Heilbron, M., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Motta, R., Almeida, J., Almeida, R., Carvalho, M., Storey, C., 2021. Evidence for a complex accretionary history preceding the amalgamation of Columbia:The Rhyacian Minas-Bahia Orogen, southern São Francisco Paleocontinent, Brazil. Gondwana Res. 92, 149-171
    [19]
    Cabral, A.R., Zeh, A., Vianna, N.C., Ackerman, L., Pašava, J., Lehmann, B., Chrastný, V., 2019. Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Nat. Sci. Rep. 9, 4570. doi.org/10.1038/s41598-019-40998-5
    [20]
    Campos, J.C.S., Carneiro, M.A., 2008. Neoarchean and Paleoproterozoic granitoids marginal to the Jeceaba-Bom Sucesso lineament (SE border of the southern São Francisco Craton):genesis and tectonic evolution. J. S. Am. Earth Sci. 26, 463-484
    [21]
    Campos Neto, M.C., Basei, M.A.S., Janasi, V.A., Moraes, R., 2011. Orogen migration and tectonic setting of the Andrelandia Nappe system:an Ediacaran western Gondwana collage, south of São Francisco Craton. J. S. Am. Earth Sci. 32 (4), 393-406
    [22]
    Cardoso, C.D., Ávila, C.A., Neumann, R., Oliveira, E.P., Valeriano, C.M., Dussin, I.A., 2019. A Rhyacian continental arc during the evolution of the Mineiro belt, Brazil:Constraints from the Rio Grande and Brumado metadiorites. Lithos 326-327, 246-264
    [23]
    Carvalho, B.B., Janasi, V.A., Sawyer, E.W., 2017. Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil:a dating and isotopic study of the Kinawa migmatite. Precambrian Res. 291, 98-118
    [24]
    Carvalho, B.R.B.M., Trouw. R. A.J., Costa, R.V.C., Ribeiro, A., Heilbron, M., Marimon, R.S., 2020. Microstructural and metamorphic evolution of the Carrancas Klippe, interference zone of the Neoproterozoic southern Brasilia and Ribeira orogens, SE Brazil. J. S. Am. Earth Sci. 103, 102744. doi.org/10.1016/j.jsames.2020.102744
    [25]
    Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., 2018. Geological archive of the onset of plate tectonics. Philos. Trans. -Royal Soc. A, Math. Phys. Eng. Sci. 376, 20170405
    [26]
    Cawood, P.A., Kroner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. Geol. Soc. Spec. Publ. 318, 1-36. doi.org/10.1144/SP318.1
    [27]
    Cawood, P. A., Hawkesworth, C. J., Dhuime, B. 2012. Detrital zircon record and tectonic setting. Geology 40(10), 875-878. doi.org/10.1130/G32945.1
    [28]
    Cherman, A.F. 2004. Geologia, petrografia e geocronologia de ortognaisses paleo- proterozoicos da borda meridional do Cráton do São Francisco, na região entre Itumirim e Nazareno, Minas Gerais. Tese de Doutorado, Universidade Federal do Rio de Janeiro, RJ. 259 pp (in Portuguese).
    [29]
    Chemale Jr., F., Kawashita, K., Dussin, I.A., Ávila, J.N., Justino, D., Bertotti, A.L., 2012. U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration. An. Acad. Bras. Cienc. 84, 275-296
    [30]
    Cioffi, C.R., Campos Neto, M.C., Möller, A., Rocha, B.C., 2016. Paleoproterozoic continental crust generation events at 2.15 and 2.08 Ga in the basement of the southern Brasília Orogen, SE, Brazil. Precambrian Res. 275, 176-196
    [31]
    Condie, K.C., 2007. Accretionary orogens in space and time. In:Hatcher Jr., R.D., Carlson, M.P., McBride, J.H., Martínez Catalan, J.R. (Eds.), 4-D Framework of Continental Crust, Geological Society of America. Memoir 200, pp. 145-158.
    [32]
    Condie, K. C., 2014. Growth of continental crust:a balance between preservation and recycling. Mineral. Mag. 78(3), p. 623-637
    [33]
    Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett. 282(1-4), 294-298
    [34]
    Condie, K.C., Davaille, A., Aster, R.C., Arndt, N., 2015. Upstairs-downstairs:Supercontinents and large igneous provinces, are they related? Int. Geol. Rev. 57(11-12), 1341-1348
    [35]
    Corfu, F., Hanchar, J. M., Hoskin, P.W.O., Kinney, P., 2003. Atlas of Zircon textures. Rev. Mineral. Geochem. 53, 469-500
    [36]
    Corrêa Neto, A.V., Modesto, A.M., de Caputo Neto, V., Guerrero, J.C., 2012. Alteração hidrotermal em zona de cisalhamento associada ao Lineamento Congonhas, sul do Quadrilátero Ferrífero, Minas Gerais. An. Inst. Geoc. UFRJ, 35 (2), 55-64 (in Portuguese with English abstract)
    [37]
    Cordani, U.G., Teixeira, W., 2007. Proterozoic accretionary belts in the Amazonian Craton. In:R.D. Hatcher Jr., M.P., Carlson, J.H., McBride, J. R., Martinez Catalán (Eds.), The 4D framework of continental crust. GSA Memoir, 297-320. Geol. Soc. Am. Book Editors 200, Boulder, CO, USA.
    [38]
    Cruz, S.C.P., Barbosa, J.S.F., Pinto, M.S., Peucat, J.J., Paquette, J.L., Souza, J.S., Martins, V.S., Chemale Jr., F., Carneiro, M.A., 2016. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil:U-Pb geochronology, geochemistry and tectonic implications. J. S. Am. Earth Sci. 69, 43-79
    [39]
    Cutts, K., Lana, C., Alkmim, F., Farina, F., Moreira, H., Duque, V.C., 2020. Metamorphism and exhumation of basement gneiss domes in the Quadrilátero Ferrífero:Two stage dome-and-keel evolution? Geosci. Front. 10(5), 1765-1787. doi.org/10.1016/j.gsf.2019.02.009
    [40]
    Degler, R., Pedrosa-Soares, A., Novo, T., Tedeschi, M., Silva, L.C., Dussin, I., Lana, C., 2018. Rhyacian-Orosirian isotopic records from the basement of the Araçuaí-Ribeira orogenic system (SE Brazil):links in the Congo-São Francisco palaeocontinent. Precambrian Res. 317, 179-195
    [41]
    Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata:A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288, 115-125
    [42]
    Dröllner, M., Barham, M., Kirkland, C.L., Ware, B., 2021. Every zircon deserves a date:selection bias in detrital geochronology. Geol. Mag. 158 (6), 1135-1142. doi.org/10.1017/S0016756821000145
    [43]
    Duque, T.R.F., Alkmim, F.F., Lana, C.C., 2020. Grãos detríticos de zircão do Grupo Itacolomi em sua área tipo, Quadrilátero Ferrífero, Minas Gerais:idades, proveniência e significado tectônico. Geol. USP Ser. Cient. 20 (1), 10-123 (in Portuguese with English abstract), https://doi.org/10.11606/issn.2316-9095.v20-151397.
    [44]
    Dutra, L.F, Martins, M., Lana, C., 2019. Sedimentary and U-Pb detrital zircons provenance of the Paleoproterozoic Piracicaba and Sabará groups, Quadrilátero Ferrífero, Southern São Francisco craton, Brazil. Braz. J. Geol. 49(2). https://doi.org/10.1590/2317-4889201920180095
    [45]
    Ernst, R.E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge, UK
    [46]
    Farina, F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium- and High-K granitoids:clues from the Southern São Francisco Craton (Brazil). Precambrian Res. 266, 375-394
    [47]
    Farina, F., Albert, C., Martínez-Dopico, C., Aguilar Gil, C., Moreira, H., Hippertt, J.P., Cutts, K., Alkmim, F.F., Lana, C., 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil):Current models and open questions. J. S. Am. Earth Sci. 68, 4-21
    [48]
    Faulstich, F.R.L., 2016. Estudo de Minerais Pesados dos Pegmatitos da Província Pegmatítica de São João del Rei, Minas Gerais. Tese de Doutorado. Universidade Federal do Rio de Janeiro, RJ. 201 pp (in Portuguses with English abstract).
    [49]
    Fuck, R.A., Dantas, E.L., Pimentel, M.M., Botelho, N.F., Armstrong, R., Laux, J.H., Junges, S.L., Soares, J.E.P., Praxedes, I.F., 2014. Paleoproterozoic crust formation and reworking events in the Tocantins Province, central Brazil:a contribution for Atlantica Supercontinent reconstruction. Precambrian Res. 244, 53-74
    [50]
    Gehrels, G., 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annu. Rev. Earth Planet. Sci. 42, 127-149. doi.org/10.1146/annurev-earth-050212-124012
    [51]
    Geisler, T., Schaltegger, U., Tomaschek, F., 2017. Re-equilibration of Zircon in Aqueous Fluids and Melt. Elements. 3, 43-50
    [52]
    Girelli, T.G., Chemale, F., Lanina, E.L.C., Laux, J. H., Bongiolo, E.M., Lana, C., 2018. Granulite accretion to Rio de la Plata Craton, based on zircon U-Pb-Hf isotopes:Tectonic implications for Columbia Supercontinent reconstruction. Gondwana Res. 56, 105-118
    [53]
    Hartmann, L.A., Endo, I., Suita, M.T.F., Santos, J.O.S., Frantz, J.C., Carneiro, M.A., McNaughton, N.J., Barley, M.E., 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes. J. S. Am. Earth Sci. 20, 273-285. doi.org/10.1016/j.jsames.2005.07.015
    [54]
    Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Mem. Geol. Soc. Lond. 167, 229-248
    [55]
    Heilbron, M., Duarte, B.P., Valeriano, C.M., Simonetti, A., Machado, N., Nogueira, J.R., 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology:implications for paleogeographic reconstructions of the Sao Francisco-Congo paleocontinent. Precambrian Res. 178, 136-148
    [56]
    Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 53(1), 27-62
    [57]
    Jackson, S.E., Pearsona, N.J., Griffina, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69
    [58]
    Kroonemberg, S.B., De Roever, E.W.F., Fraga, L.M., Reis, N.J., Faraco, T., Lafon, J-M., Cordani, U.G., Wong, T.E., 2016. Paleoproterozoic evolution of the Guiana Shield in Suriname:A revised model. Neth. J. Geosci. Geol. Mijnb. 95, 491-522
    [59]
    Kuribara, Y., Tsunogae, T., Takamura, Y., Santosh, M., Takamura, Y., Costa, A., Rosiére, C., 2019. Eo-archean to Neoproterozoic crustal evolution of the Mantiqueira and the Juiz de Fora Complexes, SE Brazil:Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes. Precambrian Res. 323, 82-101
    [60]
    Kuster, K., Ribeiro, A., Trouw, R.A.J., Dussin, I., Marimon, R.S., 2020. The Neoproterozoic Andrelândia group:Evolution from an intraplate continental margin to an early collisional basin south of the São Francisco craton, Brazil. J. S. Am. Earth Sci. 102, 102666
    [61]
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr., H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 231, 157-173
    [62]
    Long, X., Wilde, S.A., Yuan, C., Hu, A., Sun, M., 2015. Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton:Implications for tectonic setting and crustal growth. Precambrian Res. 260, 76-90
    [63]
    Liu, H., Sun, W-dong, Zartman, R., Tang, M., 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago. Nat. Commun. 10, 3408. doi.org/10.1038/s41467-019-11329-z
    [64]
    Ludwig, K.R., 2008. User's manual for Isoplot 3.70-A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center. Berkeley, USA. Geol. Soc. Spec. Publ. 4, 76p.
    [65]
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences:implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferrifero, southeast Brazil. Earth Planet. Sci. Lett 141, 259-276
    [66]
    Marimon, R. S., Trouw, R.A.J., Dantas, E. L., Ribeiro. A., 2020. U-Pb and Lu-Hf isotope systematics on detrital zircon from the southern São Francisco Craton's Neoproterozoic passive margin:Tectonic implications. J. S. Am. Earth Sci. 100, 102539. doi.org/10.1016/j.jsames.2020.102539
    [67]
    Martínez-Dopico, C.I.M., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161
    [68]
    Martins-Ferreira, M.A.C., Coelho, A.N., Chemale Jr., F.C., Campos, J.E.C., Seraine, M., Rodrigues, E.N., 2020. Multi-stage crustal accretion by magmatic flare-up and quiescence intervals in the western margin of the São Francisco Craton:U-Pb-Hf and geochemical constraints from the Almas Terrane. Gondwana Res. 85, 32-54. doi.org/10.1016/j.gr.2020.04.005
    [69]
    Mendes, M.D.C.O., Lobato, L.M., Suckau, V., Lana, C., 2014. Datação U-Pb in situ por LA-ICPMS em zircões detríticos da Formação Cercadinho, Supergrupo Minas. Geol. USP, Ser. Cient. 14 (1), 55-68 (in Portuguese with English abstract)
    [70]
    Moreira, H., Lana, C., Nalini, H.A., 2016. The detrital zircon record of an Archaean convergent basin in the Southern Sao Francisco Craton, Brazil. Precambrian Res. 275, 84-99
    [71]
    Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C., 2018. Evolution of Siderian juvenile crust to rhyacian high Ba-Sr magmatism in the Mineiro belt, southern São Francisco craton. Geosci. Front. 9, 977-995
    [72]
    Moreira, H., Storey, C., Fowler, M., Seixas, L., Dunlop, J., 2020. Petrogenetic processes at the tipping point of plate tectonics:Hf-O isotope ternary modelling of Earth's last TTG to sanukitoid transition. Earth Planet Sc. Lett. 551, 116558
    [73]
    Neri, M.E.N.V., Rosière, C.A., Lana, C.C., 2013. Supergrupo Minas na Serra de Bom Sucesso, extremo sudoeste do Quadrilátero Ferrífero-MG:petrografia, geoquímica e isótopos de U-Pb. Geol. USP Ser. Cient. 13 (2), 117-202 (in Portuguese with English abstract)
    [74]
    Noce, C.M., Pedrosa-Soares, A.C., da Silva, L.C., Armstrong, R., Piuzana, D., 2007. Evolution of polycyclic basement complexes in the Araçuai Orogen, based on U-Pb SHRIMP data:implications for Brazil-Africa links in Paleoproterozoic time. Precambrian Res. 159, 60-78
    [75]
    Partin, C.A., Bekker, A., Sylvester, P.J., Wodicka, N., Stern, R.A., Chacko, T., Heaman, L.M., 2014. Filling in the juvenile magmatic gap:Evidence for uninterrupted Paleoproterozoic plate tectonics. Earth Planet. Sci. Lett. 388, 123-133
    [76]
    Pehrsson, S.J., Buchan, K.L., Eglington, B.M., Berman, R.M., Rainbird, R.H., 2014. Did plate tectonics shutdown in the Paleoproterozoic? A view from the Siderian geologic record. Gondwana Res. 26 (3), 803-815
    [77]
    Pereira, I., Storey, C.D., Strachan, R.A., Santos, T.B., Darling, J.R., 2020. Detrital rutile ages can deduce the tectonic setting of sedimentary basins. Earth Planet. Sci. Lett. 537, 116193
    [78]
    Ribeiro, A., Teixeira, W., Dussin, I.A., Ávila, C.A., Nascimento, D., 2013. U-Pb LA-ICP-MS detrital zircon ages of the São João del Rei and Carandaí basins:new evidence of intermittent Proterozoic rifting in the São Francisco paleocontinent. Gondwana Res. 24, 713-726
    [79]
    Romano, R., Lana, C., Alkmim, F.F., Stevens, G., Armstrong, R., 2013. Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Res. 224, 143-159
    [80]
    Rossignol, C., Lana, C., Alkmim, F., 2020.Geodynamic evolution of the Minas Basin, southern Sao Francisco Craton (Brazil), during the early Paleoproterozoic:Climate or tectonic? J. S. Am. Earth Sci. 101, 102628. doi.org/10.1016/j.jsames.2020.102628
    [81]
    Rubatto, D., 2017. Zircon:The metamorphic mineral. Rev. Miner. Geoch. 83, 261-295
    [82]
    Saboia, A.M., Oliveira, C.G., Dantas, E.L., Cordeiro, P., Scandolara, J.E., Rodrigues, J.B., Sousa, I.M.C., 2020. The Siderian crust (2.47-2.3 Ga) of the Goias Massif and its role as a building block of the São Francisco paleocontinent. Precambrian Res. 350, 105901. doi.org/10.1016/j.precamres.2020.105901
    [83]
    Sato, K., Basei, M.A.S., Siga Junior, O., Onoi, A.T., 2010. In situ U-Th-Pb isotopic analyses by excimer laser ablation/ICP-MS on Brazilian megacrystal xenotime:First results on U-Pb isoptes at CPGeo-IGC-USP. VII SSAGI-South American Symposium on Isotope Geology, Brasília, Abstracts, pp. 349-352
    [84]
    Seixas, L.A.R., David, J., Stevenson, R., 2012. Geochemistry, Nd isotopes and U-Pb geochronology of a 2350 Ma TTG suite, Minas Gerais, Brazil:implications for the crustal evolution of the southern São Francisco craton. Precambrian Res. 196, 61-80
    [85]
    Seixas, L.A.R., Bardintzeff, J.M., Stevenson, R., Bonin, B., 2013. Petrology of the high-Mg tonalites and dioritic enclaves of the ca. 2130 Ma Alto Maranhão suite:evidence for a major juvenile crustal addition event during the Rhyacian orogenesis, Mineiro Belt, southeast Brazil. Precambrian Res. 238, 18-41
    [86]
    Silva, M.M., 2017. Caracterização e quantificação dos processos de interação entre magmas félsicos na gênese do granitoide Paleoproterozoico Gentio, região de Dores de Campos, Minas Gerais. Tese de Doutorado, Universidade Federal do Rio de Janeiro. RJ. 186 pp (in Portuguese with English abstract).
    [87]
    Silva, M.M, Ávila, C.A., Barbosa, N., Teixeira, W., 2020. Caracterização do ortognaisse Brejo Alegre e sua inserção no contexto evolutivo do Cinturão Mineiro, Craton São Francisco. Anuário do Inst. Geoc. UFRJ. 43. doi.org/10.11137/2020 (in Portuguese with English abstract).
    [88]
    Simon, M.B., Bongiolo, E.M., Ávila, C.A., Teixeira, W., Marimon, R.S., Oliveira, E.P., 2021. Archean sodic metagranitoids from the Southern São Francisco Craton:Review, petrogenesis, and tectonic implications. Lithos 398-399, 106246
    [89]
    Simon, M.B., Bongiolo, E.M., Ávila, C. A, Oliveira, E.P., Teixeira, W., Stohler, R.C., Soares de Oliveira, F. V., 2018. Neoarchean reworking of TTG-like crust in the southernmost portion of the São Francisco Craton:U-Pb zircon dating and geochemical evidence from the São Tiago Batholith. Precambrian Res. 314, 353-376
    [90]
    Spencer, C.J., Murphy, J.B., Christopher, Kirkland, B.L., Liu, Y., Mitchell, R.N., 2018. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nat. Geosci. 11, 97-101
    [91]
    Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26 (203), 207-221
    [92]
    Teixeira, W., Ávila, C.A., Nunes, L.C., 2008. Nd-Sr Isotopic Geochemistry and Geochronology of the Fé Granitic Gneiss and Lajedo Granodirite:implications for paleoproterozoic Evolution of the Mineiro Belt, Southern São Francisco Craton, Brazil. Geol. USP, Ser. Cient. 8(1):53-74 (in Portuguese with English abstract)
    [93]
    Teixeira, W., Avila, C.A., Dussin, I.A., Correa Neto, A.V., Bongiolo, E.M., Santos, J.O.S., Barbosa, N.S., 2015. A juvenile accretion episode (2.35-2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny:zircon U-Pb-Hf and geochemical evidences. Precambrian Res. 256, 148-169
    [94]
    Teixeira, W., Oliveira, E.P., Marques, L.S., 2017a. The nature and evolution of the Archean Crust of the São Francisco Craton. In:Heilbron, M., Alkmim, F., Cordani, U.G. (Eds.), São Francisco Craton, Eastern Brasil:tectonic genealogy of a miniature continent, Regional Geology Review Series. Springer-Verlag, pp. 29-56. dx.doi.org/10.1007/978-3-319-01715-0_3.
    [95]
    Toledo, C.L.B., 2002. Evolução geológica das rochas máficas e ultramáficas no Greenstone Belt Barbacena, na região de Nazareno, MG. Tese de Doutorado, Universidade Estadual de Campinas, 307 pp (in Portuguese).
    [96]
    Vermeesch, P., 2004. How many zircons are needed for a provenance study. Earth Planet. Sci. Lett. 224, 441- 451
    [97]
    Teixeira, W., Oliveira, E.P., Peng, P., Dantas, E.L., Hollanda, M.H., 2017b. U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton:tectonic matches with the North China Craton and paleogeographic inferences. Precambrian Res. 293, 91-111
    [98]
    Valladares, C.S., Machado, N., Heilbron, M., Gauthier, G., 2004. Ages of detrital zircon from siliciclastic successions south of the São Francisco craton, Brazil:implications for the evolution of Proterozoic basins. Gondwana Res. 7, 913-921
    [99]
    Vasconcelos, F.F., Ávila, C.A., Neumann, R., Teixeira, W., Bongiolo, E.M., Barbosa, N., Camara, B.O., Menezes, V.H., Mattos, F., 2017. Ortognaisse Morro do Resende:mineralogia, petrografia, geoquímica e geocronologia. Geol. USP. Ser. Cient. 17, 143-164 (in Portuguese with English abstract)
    [100]
    Vervoot, J.D., Kemp, A.I.S., 2016. Clarifying the Zr Hf isotopic record of crust-mantle evolution. Chem. Geol. 425, 65-75
    [101]
    Voice, P.J., Kowalewski, M., Eriksson, K.A., 2011. Quantifying the timing and rate of crustal evolution:global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109-126
    [102]
    Westin, A., Campos Neto, M.C., 2013. Provenance and tectonic setting of the external nappe of the Southern Brasilia Orogen. J. S. Am. Earth Sci. 48, 220-239
    [103]
    Westin, A., Campos Neto, M.C., Hawkesworth, C.J., Cawood, P.A., Dhuime, B., Delavault, H., 2016. A Paleoproterozoic intra-arc basin associated with a juvenile source in the Southern Brasilia Orogen:application of U-Pb and Hf-Nd isotopic analyses to provenance studies of complex areas. Precambrian Res. 276, 178-193
    [104]
    Westin, A., Campos Neto, M.C., Cawood, P., Hawkesworth, C.J., Dhuime, B., Delavault, H., 2019. The Neoproterozoic southern passive margin of the Sao Francisco craton:insights on the pre-amalgamation of west Gondwana from U-Pb and Hf-Nd isotopes. Precambrian Res. 320, 454-471
    [105]
    Yang, Q. Y., Santosh, M., 2015. Paleoproterozoic arc magmatism in the North China Craton:no Siderian global plate tectonic shutdown. Gondwana Res. 28(1), 82-105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (39) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return