Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Igor de Camargo Moreira, Elson Paiva Oliveira, Daniel Francisco Martins de Sousa. Evolution of the 3.65-2.58 Ga Mairi Gneiss Complex, Brazil: Implications for growth of the continental crust in the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101366. doi: 10.1016/j.gsf.2022.101366
Citation: Igor de Camargo Moreira, Elson Paiva Oliveira, Daniel Francisco Martins de Sousa. Evolution of the 3.65-2.58 Ga Mairi Gneiss Complex, Brazil: Implications for growth of the continental crust in the São Francisco Craton[J]. Geoscience Frontiers, 2022, 13(5): 101366. doi: 10.1016/j.gsf.2022.101366

Evolution of the 3.65-2.58 Ga Mairi Gneiss Complex, Brazil: Implications for growth of the continental crust in the São Francisco Craton

doi: 10.1016/j.gsf.2022.101366
Funds:

dia Gomes are also acknowledged for suggestions and assistance in revising an earlier draft of the manuscript.

rica Tonetto, Cristiano Lana, and Stefano Zincone for supporting the analytical analysis. Felipe Holanda dos Santos and Ná

gico (CNPq) Grant (#305099/2019-1 to EPO), the Institute of Geosciences of the University of Campinas and by the Coordenaç

o de Amparo à

ã

This research was funded by the Fundaç

o de Aperfeiç

ã

oamento de Pessoal de Ní

Pesquisa do Estado de Sã

o Paulo (FAPESP) Grant (#2012/15824-6 and #2018/25465-0 to EPO), the Conselho Nacional de Desenvolvimento Cientí

fico e Tecnoló

vel Superior (CAPES) PhD Scholarship (#001) to the senior author. We would like to thank guest editors Kathryn Cutts, Hugo Moreira, and Mathias Schannor and two reviewers Martin Guitreau and Dewashish Upadhyay for their constructive reviews and scientific input, which greatly helped to improve the original manuscript. The authors are grateful to Margareth Sugano, É

  • Received Date: 2021-03-05
  • Accepted Date: 2022-01-13
  • Rev Recd Date: 2021-12-06
  • Publish Date: 2022-02-03
  • The composition and formation of the Earth's primitive continental crust and mantle differentiation are key issues to understand and reconstruct the geodynamic terrestrial evolution, especially during the Archean. However, the scarcity of exposure to these rocks, the complexity of lithological relationships, and the high degree of superimposed deformation, especially with long-lived magmatism, make it difficult to study ancient rocks. Despite this complexity, exposures of the Archean Mairi Gneiss Complex basement unit in the São Francisco Craton offer important information about the evolution of South America's primitive crust. Therefore, here we present field relationships, LA-ICP-SFMS zircon U-Pb ages, and LA-ICP-MCMS Lu-Hf isotope data for the recently identified Eoarchean to Neoarchean gneisses of the Mairi Complex. The Complex is composed of massive and banded gneisses with mafic members ranging from dioritic to tonalitic, and felsic members ranging from TTG (Tonalite-Trondhjemite-Granodiorite) to granitic composition. Our new data point to several magmatic episodes in the formation of the Mairi Gneiss Complex:Eoarchean (ca. 3.65-3.60 Ga), early Paleoarchean (ca. 3.55-3.52 Ga), middle-late Paleoarchean (ca. 3.49-3.33 Ga) and Neoarchean (ca. 2.74-2.58 Ga), with no records of Mesoarchean rocks. Lu-Hf data unveiled a progressive evolution of mantle differentiation and crustal recycling over time. In the Eoarchean, rocks are probably formed by the interaction between the pre-existing crust and juvenile contribution from chondritic to weakly depleted mantle sources, whereas mantle depletion played a role in the Paleoarchean, followed by greater differentiation of the crust with thickening and recycling in the middle-late Paleoarchean. A different stage of crustal growth and recycling dominated the Neoarchean, probably owing to the thickening of the continental crust by collision, continental arc growth, and mantle differentiation.
  • loading
  • [1]
    Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., Martinez Dopico, C., 2016. Archean crustal evolution in the Southern São Francisco craton, Brazil:constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos 266, 64-86. 10.1016/j.lithos.2016.09.029
    [2]
    Alkmim, F.F., 2004. O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações Almeidianas ao delimitá-lo. In:Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito-Neves, B.B. (Eds.), Geologia do Continente Sul-Americano:Evolução da Obra de Fernando Flávio Marques de Almeida. Ed. Beca, pp. 17-34.
    [3]
    Barbosa, J.S.F., Sabaté, P., 2002. Geological features and the Paleoproterozoic collision of the four Archean crustal segments of the São Francisco Craton Bahia, Brazil. Academia Brasileira de Ciências 74(2), 343-359. https://dx.doi.org/10.1590/S0001-37652002000200009
    [4]
    Barbosa, J.S.F, Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil:geodynamic features. Precambrian Res. 133, 1-27
    [5]
    Barbosa, N., Menezes Leal, A.B., Debruyne, D., Bastos Leal, L.R., Barbosa, N.S., Mercês, L., Barbosa, J.S., Koproski, L.M., 2020. Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi-Correntina block (GCB), north São Francisco Craton, Brazil, unraveled by U-Pb Geochronology, Nd-Sr isotopes and geochemical constraints. Precambrian Res. 340, 105614. 10.1016/j.precamres.2020.105614
    [6]
    Barros, R.A., Caxito, F.A., Egydio-Silva, M., Dantas, E.L., Pinheiro, M.A.P., Rodrigues J.B., Basei, M.A.S., Virgens-Neto J., Freitas, M.S., 2020. Archean and Paleoproterozoic crustal evolution and evidence for cryptic Paleoarchean-Hadean sources of the NW São Francisco Craton, Brazil:Lithochemistry, geochronology, and isotope systematics of the Cristalândia do Piauí Block. Gondwana Res. 88, 268-295. 10.1016/j.gr.2020.07.004
    [7]
    Bastos Leal, L.R., Cunha, J.C., Cordani, U.G., Teixeira, W., Nutman, A.P., Leal, A.B.M., Macambira, M.J.B., 2003. SHRIMP U-Pb, 207Pb/206Pb zircon dating, and Nd isotopic signature of the Umburanas greenstone belt, northern São Francisco craton, Brazil. J. Earth Sci. 15, 775-785. 10.1016/S0895-9811(02)00129-3
    [8]
    Bauer, A.M., Fisher, C.M., Vervoort, J.D., Bowring, S.A., 2017. Coupled zircon Lu-Hf and U-Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss Complex. Earth Planet. Sci. Lett. 458, 37-48. 10.1016/j.epsl.2016.10.036
    [9]
    Blichert-Toft, J., Boyet, M., Télouk, P., Albarède, F., 2002. 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth Planet. Sci. Lett. 204(1-2), 167-181. 10.1016/S0012-821X(02)00976-7
    [10]
    Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273(1), 48-57. 10.1016/j.epsl.2008.06.010
    [11]
    Bowring, S.A., Williams, I.S., 1999. Priscoan (4.00±4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol. 134, 3-16. 10.1007/s004100050465
    [12]
    Cavosie, A.J., Valley, J.W., Wilde, S.A., 2019. The Oldest Terrestrial Mineral Record:Thirty Years of Research on Hadean Zircon from Jack Hills, Western Australia. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 255-278. 10.1016/B978-0-444-63901-1.00012-5.
    [13]
    Condie, K.C., 2019. Earth's oldest rocks and minerals. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 239-253. 10.1016/B978-0-444-63901-1.00011-3.
    [14]
    Cruz, S.C.P., Peucat, J.J., Teixeira, L., Carneiro, M.A., Martins, A.A.M., Santana, J.S.S., Souza, J.S., Barbosa, J.S.F., Leal, A.B.M., Dantas, E., Pimentel, M., 2012. The Caraguataí syenitic suite, a ca. 2.7 Ga-old alkaline magmatism (petrology, geochemistry and UePb zircon ages). Southern Gavião block (São Francisco Craton), Brazil. J. Earth Sci. 37, 95-112. 10.1016/j.jsames.2011.11.006
    [15]
    Dantas, E.L., Brito Neves, B.B., Fuck, R.A., 2010. Looking for the oldest rocks of South America:Paleoarchean orthogneiss of the Sobradinho Block, northernmost foreland of the São Francisco Craton, Petrolina, Pernambuco, Brazil, in:VII SSAGI South America Symposium on Isotope Geology, São Paulo, BR, S0136.
    [16]
    Dey, S., Topno, A., Liu, Y.S., Zong, K.Q., 2017. Generation and evolution of Paleoarchean continental crust in the central part of the Singhbhum craton, eastern India. Precambrian Res. 298, 268-291. 10.1016/j.precamres.2017.06.009
    [17]
    Dey, S., Mitra, A., Nandy, J., Mondal, S., Topno, A., Liu, Y.S., Zong, K.Q., 2019. Early Crustal Evolution as Recorded in the Granitoids of the Singhbhum and Western Dharwar Cratons. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 741-792. 10.1016/B978-0-444-63901-1.00030-7.
    [18]
    Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science 335(6074), 1334-1336. 10.1126/science.1216066
    [19]
    Fernandes P.C.D.; Frantz J.C.; Rios D.C.; Davis D.W.; Porcher C.C.; Conceição R.V.; Coelho R.E. 2019. The Jequié Complex Revisited:a U-Pb Geochronological Reappraisal of the Geology and Stratigraphy of the Jequié-Itagi Area (Bahia, Brazil). Anuário do Instituto de Geociências-UFRJ 42(1), 166-178. 10.11137/2019_1_166_178.
    [20]
    Gardiner, N.J., Hickman, A.H., Kirkland, C.L., Lu, Y., Johnson, T., Zhao, J.-X., 2017. Processes of Crust Formation in the early Earth Imaged through Hf isotopes from the East Pilbara Terrane. Precambrian Res. 297, 56-76. 10.1016/j.precamres.2017.05.004
    [21]
    Ge, R.F., Wilde, S.A., Kemp, A.I.S., Jeon, H., Laure, A.J.M., Zhu, W., Wu, H., 2020. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle:The ∼3.72 Ga Aktash gneisses, Tarim Craton (NW China). Earth Planet. Sci. Lett. 538, 116225
    [22]
    Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration-new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 261, 230-243. 10.1016/j.epsl.2020.116225
    [23]
    Griffin, W., Wang, X., Jackson, S., Pearson, N., O'Reilly, S.Y., Xu, X.S., Zhou, X.M., 2002. Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61(3-4), 237-269. 10.1016/S0024-4937(02)00082-8
    [24]
    Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S.J., Albarède, F., 2012. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet. Sci. Lett. 337, 211-223. 10.1016/j.epsl.2012.05.029
    [25]
    Guitreau, M., Mukasa, S.B., Loudin, L., Krishnan, S., 2017. New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Res. 302, 33-49. http://dx.doi.org/10.1016/j.precamres.2017.09.016
    [26]
    Guitreau, M., Boyet, M., Paquette, J.L., Gannoun, A., Konc, Z., Benbakkar, M., Suchorski, K., Hénot, J.-M., 2019. Hadean protocrust reworking at the origin of the Archean Napier Complex (Antarctica). Geochem. Persp. Let. 12, 7-11. https://https://doi.org/10.7185/geochemlet.1927
    [27]
    Harley, S.L., Black, L.P., 1997. A revised Archean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarctic Sci. 1, 74-91. 10.1017/S0954102097000102
    [28]
    Harley, S.L., Kelly, N.M., Kusiak, M.A., 2019. Ancient Antarctica:The Archean of the East Antarctic Shield. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 865-897. 10.1016/B978-0-444-63901-1.00035-6.
    [29]
    Harrison, T.M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean Hafnium:evidence of Continental Crust at 4.4 to 4.5 Ga. Science 310 (5756), 1947-1950. 10.1126/science.1117926
    [30]
    Harrison, T.M., Schmitt, A.K., McCulloch, M.T., Lovera, O.M., 2008. Early (4.5 Ga) formation of terrestrial crust:Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476-486. 10.1016/j.epsl.2008.02.011
    [31]
    Hiess, J., Bennett, V.C., Nutman, A.P., Williams, I.S., 2009. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchean rocks, West Greenland:New insights to making old crust. Geochim. Cosmochim. Acta 73(15), 4489-4516. 10.1016/j.gca.2009.04.019
    [32]
    Hiess, J., Bennett, V.C., 2016. Chondritic Lu/Hf in the early crust-mantle system as recorded by zircon populations from the oldest Eoarchean rocks of Yilgarn Craton, West Australia and Enderby Land, Antarctica. Chem. Geol. 427, 125-143. 10.1016/j.chemgeo.2016.02.011
    [33]
    Hoffmann J.E.; Zhang C.; Moyen J.F.; Nagel T.J. 2019. The formation of tonalites-trondjhemite-granodiorites in early continental crust. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 133-168. 10.1016/B978-0-444-63901-1.00007-1.
    [34]
    Iizuka, T., Komiya, T., Johnson, S.P., Kon, Y., Maruyama, S., Hirata, T., 2009. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada:evidence from in-situ Lu-Hf isotope analysis of zircon. Chemical Geology 259, 230-239. 10.1016/j.chemgeo.2008.11.007
    [35]
    Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., Coath, C.D., Nemchin, A., Pidgeon, R.T., Vervoort, J.D., DuFrane, S.A., 2010. Hadean crustal evolution revisited:New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296 (1-2), 45-56. 10.1016/j.epsl.2010.04.043
    [36]
    Kemp, A.I.S., Hickman, A.H., Kirkland, C., Vervoort J.D., 2015. Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precambrian Res. 261, 112-126. 10.1016/j.precamres.2015.02.011
    [37]
    Kemp, A.I.S., Wilde, S.A., Spaggiari, C., 2019. The Narryer Terrane, Yilgarn Craton, Western Australia:Review and Recent Developments. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier2, pp. 401-433. 10.1016/B978-0-444-63901-1.00018-6.
    [38]
    Kirkland, C.L., Hartnady, M.I.H., Barham, M., Olierook, H.K.H., Steenfelt, A., Hollis, J.A., 2021. Widespread reworking of Hadean-to-Eoarchean continents during Earth's thermal peak. Nat Commun. 12, 331. 10.1038/s41467-020-20514-4
    [39]
    Kröner, A., Hoffmann, J.E., Xie, H.Q., Münker, C., Hegner, E., Wan, Y.S., Hofmann, A., Liu, D.Y., Yang, J.H., 2014. Generation of early Archean grey gneisses through melting of older crust in the eastern Kaapvaal craton, southern Africa. Precambrian Res. 255, 823-846. 10.1016/j.precamres.2014.07.017
    [40]
    Liu, D.Y., Wan, Y.S., Wu, J.S., Wilde, S.A., Zhou, H.Y., Dong, C.Y., Yin, X.Y., 2007. Eoarchean Rocks and Zircons in the North China Craton. In:Kranendonk, M.J.V., Smithies, H.R., Bennett V.C. (Eds), Earth's oldest rocks. Elsevier, pp. 251-273. 10.1016/S0166-2635(07)15035-0.
    [41]
    Loureiro, H.S.C., 1991. Mundo Novo, folha Sc.24-Y-D-IV:Estado da Bahia-escala 1:100,000. In:DNPM, SF, Brasília, Programa de Levantamentos Geológicos Básicos do Brasil (in Pougse with English abstract).http://rigeo.cprm.gov.br/xmlui/handle/doc/8498?show=full.
    [42]
    Ludwig, K.R., 2012. User's Manual for Isoplot Version 3.75-4.15:a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 5, 1-75. http://www.bgc.org/isoplot_etc/isoplot.html
    [43]
    Magee, Jr., C.W., Teles, G., Vicenzi, E.P., Taylor, W., Heaney, P., 2016. Uranium irradiation history of carbonado diamond; implications for Paleoarchean oxidation in the São Francisco craton. Geology 44(7), 527-530. 10.1130/G37749.1
    [44]
    Martin, H., Peucat, J. J., Sabaté, P., Cunha, J. C., 1997. Crustal evolution in the early Archean of South America:Example of the Sete Voltas Massif, Bahia State, Brazil. Precambrian Res. 82(1-2), 35-62. 10.1016/S0301-9268(96)00054-X
    [45]
    Martins, A.A.M., Lopes, C.G., Pires, A.S., 2017. Carta geológico-geofísica integrada Novas fronteiras-Contendas-Macajuba. Salvador:CPRM. Escala 1:250,000. (in Pougse with English abstract). http://rigeo.cprm.gov.br/xmlui/handle/doc/18633?show=full.
    [46]
    Martins de Sousa, D. F., Oliveira, E. P., Amaral, W. S., Baldim, M. R., 2020. The Itabuna-Salvador-Curaçá Orogen revisited, São Francisco Craton, Brazil:New zircon U-Pb ages and Hf data support evolution from Archean continental arc to Paleoproterozoic crustal reworking during block collision. J. South Am. Earth Sci. 104, 102826. 10.1016/j.jsames.2020.102826
    [47]
    Mole, D.R., Kirkland, C.L., Fiorentini, M.L., Barnes, S.J., Cassidy, K.F., Isaac, C., Belousova, E.A., Hartnady, M., Thebaud, N., 2019. Time-space evolution of an Archean craton:A Hf-isotope window into continent formation. Earth-Sci. Rev. 196, 102831. 10.1016/j.earscirev.2019.04.003
    [48]
    Moreira, H., Lana, C., Nalini Jr., H.N., 2016. The detrital zircon record of an Archean convergent basin in the Southern São Francisco Craton, Brazil. Precambrian Res. 275, 84-99. 10.1016/j.precamres.2015.12.015
    [49]
    Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroona, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255(1-2), 231-235. 10.1016/j.chemgeo.2008.06.040
    [50]
    Moyen, J.F., Laurent, O., 2018. Archean tectonic systems:A view from igneous rocks. Lithos 302-303, 99-125. 10.1016/j.lithos.2017.11.038
    [51]
    Næraa, T., Scherstén, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F., Whitehouse, M.J., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627-630. 10.1038/nature11140
    [52]
    Navarro, M.S., Tonetto, E.M., Oliveira, E.P., 2015. LA-SF-ICP-MS U-Pb zircon dating at University of Campinas, Brazil. Geoanalysis 2015, Vienna, Austria, p. 9.
    [53]
    Navarro, M.S., Tonetto, E.M., Oliveira, E.P., 2017. Peixe zircon:new Brazilian reference material for U-Pb geochronology by LA-SF-ICP-MS. Goldschmidt Abstracts 2017, 3815. https://goldschmidtabstracts.info/2017/3815.pdf
    [54]
    Nebel-Jacobsen, Y., Munker, C., Nebel, O., Gerdes, O., Mezger, K., Nelson, D. R., 2010. Reworking of Earth's first crust:Constraints from Hf isotopes in Archean zircons from Mt. Narryer, Australia. Precambrian Res. 182, 175-186. 10.1073/pnas.0913605107
    [55]
    Nutman, A.P., Cordani, U.G., 1993. Shrimp U-Pb zircon geochronology of Archean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Res. 163, 179-188. 10.1016/0301-9268(93)90032-W
    [56]
    Nutman, A.P., Bennett, V.C., Friend, C.R.L, Mcgregor, V.R., 2000. The early Archean Itsaq Gneiss Complex of southern West Greenland:The importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution. Geochim. Cosmochim. Acta 64(17), 3035-3060. 10.1016/S0016-7037(99)00431-7
    [57]
    Nutman, A.P., Bennett, V.C., 2019. The 3.9-3.6 Ga Itsaq Gneiss Complex of Greenland. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 375-399. 10.1016/B978-0-444-63901-1.00017-4.
    [58]
    Paquette, J.L., Barbosa, J.S.F., Rohais, S., Cruz, S.C.P., Goncalves, P., Peucat, J.J., Leal A.B.M., Santos-Pinto, M., Martin, H. 2015. The geological roots of South America:4.1 Ga and 3.7 Ga zircon crystals discovered in NE Brazil and NW Argentina. Precambrian Res. 271, 49-55. 10.1016/j.precamres.2015.09.027
    [59]
    Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R., 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 11(3), 1-36. 10.1029/2009GC002618
    [60]
    Petersson, A., Kemp, A.I.S., Hickman, A.H., Whitehouse, M.J., Martin, L., Gray, C.M., 2019. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chemical Geology 511, 51-70. 10.1016/j.chemgeo.2019.01.021
    [61]
    Petrus, J.A., Kamber, B.S., 2012. VizualAge:a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanalyt. Res. 36(3), 247-270. 10.1111/j.1751-908X.2012.00158.x
    [62]
    Peucat, J.J., Mascarenhas, J.F., Barbosa, J.S., Souza, F.S., Marinho, M.M., Fanning, C.M., Leite, C.M.M., 2002. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil). J. South Am. Earth Sci.15, 363-373. 10.1016/S0895-9811(02)00044-5
    [63]
    Peucat, J.J., Barbosa, J.S., Pinho, I.C.A., Paquette, J.L., Martin, H., Fanning, M., Leal, A.B.M., Cruz, S., 2011. Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil):Nd isotopes and U-Pb zircon ages. J. South Am. Earth Sci. 31, 397-413. 10.1016/j.jsames.2011.03.009
    [64]
    Oliveira E.P., McNaughton N.J., Armstrong R. 2010. Mesoarchean to Paleoproterozoic growth of the northern Segment of the Itabuna-Salvador-Curaçá orogen, São Francisco craton, Brazil. In:Kusky, T., Mingguo, Z., Xiao, Z. (Eds.), The Evolving Continents:Understanding Processes of Continental Growth. J. Geol. Soc., London, Special Publications 338, 263-286. 10.1144/SP338.13.
    [65]
    Oliveira, E.P., McNaughton, N.J., Zincone, S.A., Talavera, C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga gneisses of the Mairi Gneiss Complex. Terra Nova 32(4), 281-289. 10.1111/ter.12460
    [66]
    Ranjan, S., Upadhyay, D., Pruseth, K.L., Nanda, J.K., 2020. Detrital zircon evidence for change in geodynamic regime of continental crust formation 3.7-3.6 billion years ago. Earth Planet. Sci. Lett. 538, 116206. 10.1016/j.epsl.2020.116206
    [67]
    Reimink, J.R., Davies, J., Chacko, T., Stern, R.A., Heaman, L.M., Sarkar, C., Schaltegger, U., Creaser, R.A., Pearson, D.G., 2016a. No evidence for Hadean continental crust within Earth's oldest evolved rock unit. Nature Geosci. 9, 777-780. 10.1038/ngeo2786
    [68]
    Reimink, J.R., Bauer, A.M., Chacko, T., 2019. The Acasta Gneiss Complex. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 329-347. 10.1016/B978-0-444-63901-1.00015-0.
    [69]
    Reis, C., Menezes, R.C.L., Miranda, D.A., Santos, F.P., Loureiro, H.C., Neves, J.P., Viera, R., 2017. Mapa geológico integrado:projeto ARIM Serra de Jacobina. Salvador:CPRM. Escala 1:250,000. (in Pougse with English abstract). http://rigeo.cprm.gov.br/xmlui/handle/doc/18679?show=full.
    [70]
    Roberts, N.M.W., Spencer, C.J., 2014. The zircon archive of continent formation through time. J. Geol. Soc., London, Special Publications 389, 197-225. 10.1144/SP389.14
    [71]
    Sabaté, P., Marinho, M.M., Vidal, P., Caen-Vachette, M., 1990. The 2-Ga peraluminous magmatism of the Jacobina-Contendas Mirante belts (Bahia, Brazil):Geologic and isotopic constraints on the sources. Chem. Geol. 83, 325-338. 10.1016/0009-2541(90)90288-I
    [72]
    Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmitz, M.D., Kamo, S.L., Gerdes, A., Confu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanalyt. Res. 41(3), 335-358. 10.1111/ggr.12167
    [73]
    Santos, F.P., Chemale Junior, F., Meneses, A.R.A.S., 2019. The nature of the Paleoproterozoic orogen in the Jacobina Range and adjacent areas, northern São Francisco Craton, Brazil, based on structural geology and gravimetric modeling. Precambrian Res. 332, 105391. 10.1016/j.precamres.2019.105391
    [74]
    Santos-Pinto, M.A.S., Peucat, J.J., Martin, H., Barbosa, J.S.F., Fanning, C.M., Cocherie, A., Paquette, J.L., 2012. Crustal evolution between 2.0 and 3.5 Ga in the southern Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil:a 3.5-3.8 Ga proto-crust in the Gavião block? J. South Am. Earth Sci.40, 129-142. 10.1016/j.jsames.2012.09.004
    [75]
    Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2019(3-4), 311-324. 10.1016/S0012-821X(04)00012-3
    [76]
    Spencer, C., Kirkland, C., Taylor, R.J.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7(4), 581-589. 10.1016/j.gsf.2015.11.006
    [77]
    Spencer, C., Kirkland, C., Roberts, N.M.W., Evans, N.J., Liebmann, J., 2020. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geosci. Front. 11(3), 843-853. 10.1016/j.gsf.2019.09.004
    [78]
    Spreafico, R.R., Barbosa, J.S.F., Barbosa, N.S., Moraes, A.M.V., 2019. Tectonic evolution of the Neoarchean Mundo Novo greenstone belt, eastern São Francisco Craton, NE Brazil:Petrology, U-Pb geochronology, and Nd and Sr isotopic constraints. J. South Am. Earth Sci.95, 102296. 10.1016/j.jsames.2019.102296
    [79]
    Teixeira W., Oliveira E.P., Marques L.S., 2017. Nature and Evolution of the Archean Crust of the São Francisco Craton. In:Heilbron, M., Cordani, U., Alkmim, F. (Eds), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Springer, Eastern Brazil, pp. 29-56. 10.1007/978-3-319-01715-0_3.
    [80]
    Teles, G., Chemale, F., Oliveira, C.G., 2015. Paleoarchean record of the detrital pyrite bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambian Res. 256, 289-313. 10.1016/j.precamres.2014.11.004
    [81]
    Teles, G., Chemale, F., Ávila, J.N., Ireland, T.R., Dias, A.N.C., Cruz, D.C.F., Constantino, C.J.L., 2020. Textural and geochemical investigation of pyrite in Jacobina Basin, São Francisco Craton, Brazil:Implications for paleoenvironmental conditions and formation of pre-GOE metaconglomerate-hosted Au-(U) deposits. Geochim. Cosmochim. Acta 273, 331-353. 10.1016/j.gca.2020.01.035
    [82]
    Vermeesch, P., 2018. IsoplotR:A free and open toolbox for geochronology. Geosci. Front. 9(5), 1479-1493. 10.1016/j.gsf.2018.04.001
    [83]
    Vervoort, J.D., Kemp, A.I.S., 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem. Geol. 425, 65-75. 10.1016/j.chemgeo.2016.01.023
    [84]
    Wan, Y.S., Xie, H.Q., Dong, C.Y., Kröner, A., Wilde, S.A., Bai, W.Q., Liu, S.J., Xie, S.W., Ma, M.Z., Li, Y., Liu, D.Y., 2019. Hadean to Paleoarchean Rocks and Zircons in China. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 293-327. 10.1016/B978-0-444-63901-1.00014-9.
    [85]
    Wang, Y.F., Li, X.H., Jin, W., Zhang, J.H., 2015. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Res. 263, 88-107. 10.1016/j.precamres.2015.03.005
    [86]
    Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19(1), 1-23. 10.1111/j.1751-908X.1995.tb00147.x
    [87]
    Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 209(1-2), 121-135
    [88]
    Woodhead, J.D., Hergt, J.M., 2007. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanalyt. Res. 29(2), 183-195. 10.1111/j.1751-908X.2005.tb00891.x
    [89]
    Wu, F.Y., Zhang, Y.B., Yang, J.H., Xie, L.W., Yang, Y.H., 2008. Zircon U-Pb and Hf isotopic constraints on the early Archean crustal evolution in Anshan of the North China Craton. Precambrian Res. 167, 339-362. 10.1016/j.precamres.2008.10.002
    [90]
    Wyche, S., Lu, Y., Wingate, M.T.D., 2019. Evidence of Hadean to Paleoarchean Crust in the Youanmi and South West Terranes, and Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. In:Kranendonk, M.J.V., Bennett V.C., Hoffmann, J.E. (Eds), Earth's oldest rocks. Elsevier, pp. 279-292. 10.1016/B978-0-444-63901-1.00013-7.
    [91]
    Zeh, A., Gerdes, A., Millonig, L., 2011. Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa:evidence for Archean crust-mantle formation and crust reworking between 3.66 and 2.73 Ga. J. Geol. Soc., London 168, 953-963. 10.1144/0016-76492010-117
    [92]
    Zincone, S.A., Oliveira, E.P., Laurent, O., Zhang, H., Zhai, M.G., 2016. 3.30 Ga high-silica intraplate volcanic-plutonic system of the Gavião Block, São Francisco Craton, Brazil:Evidence of an intracontinental rift following the creation of insulating continental crust. Lithos 266-267, 414-434. 10.1016/j.lithos.2016.10.011
    [93]
    Zincone, S.A., Barbuena, D., Oliveira, E.P., Baldim, M.R., 2017. Detrital zircon U-Pb ages as evidence for deposition of the Saúde Complex in a Paleoproterozoic foreland basin, northern Sao Francisco Craton, Brazil. J. South Am. Earth Sci. 79, 537-548. 10.1016/j.jsames.2017.09.009
    [94]
    Zincone, S.A., Oliveira, E.P., 2017. Field and geochronological evidence for origin of the Contendas-Mirante supracrustal Belt, São Francisco Craton, Brazil, as a Paleoproterozoic foreland basin. Precambrian Res. 229, 117-131. 10.1016/j.precamres.2017.07.031
    [95]
    Zincone, S.A.; Oliveira, E.P.; Ribeiro, B.P.; Marinho, M.M., 2021. High-K granites between the Archean Gavião and Jequié blocks, São Francisco Craton, Brazil:Implications for cratonization and amalgamation of the Rhyacian Atlantica continent. J. South Am. Earth Sci.105, 102920. 10.1016/j.jsames.2020.102920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return