Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Claudio de Morisson Valeriano, Caio Vinicius Gabrig Turbay, Henrique Bruno, Antonio Simonetti, Monica Heilbron, Samuel Moreira Bersan, Rob Strachan. Paleo- and Mesoarchean TTG-sanukitoid to high-K granite cycles in the southern São Francisco craton, SE Brazil[J]. Geoscience Frontiers, 2022, 13(5): 101372. doi: 10.1016/j.gsf.2022.101372
Citation: Claudio de Morisson Valeriano, Caio Vinicius Gabrig Turbay, Henrique Bruno, Antonio Simonetti, Monica Heilbron, Samuel Moreira Bersan, Rob Strachan. Paleo- and Mesoarchean TTG-sanukitoid to high-K granite cycles in the southern São Francisco craton, SE Brazil[J]. Geoscience Frontiers, 2022, 13(5): 101372. doi: 10.1016/j.gsf.2022.101372

Paleo- and Mesoarchean TTG-sanukitoid to high-K granite cycles in the southern São Francisco craton, SE Brazil

doi: 10.1016/j.gsf.2022.101372
Funds:

Joseph Dunlop and Geoff Long from University of Portsmouth for lab support. CMV and MH acknowledge CNPq and HB for FAPERJ scholarships. F. Farina and an anonymous reviewer contributed with important comments which improved an earlier version of the manuscript.

This work was carried out with support from the PRONAGEO mapping program of the CPRM (Brazilian Geological Service). CNPq and FAPERJ contributed with funding to CMV and MH respectively. The authors are grateful to the following persons:Apoena Rossi for invaluable help during field work

  • Received Date: 2021-06-14
  • Accepted Date: 2022-02-15
  • Rev Recd Date: 2022-01-19
  • Publish Date: 2022-02-18
  • The generation of the continental crust is widely accepted to have taken place predominantly in the Archean, when TTG magmatism associated with greenstone-belt supracrustal succession development was typically followed by emplacement of high-K granites before crustal stabilization. This study focuses on the Campos Gerais complex (CGC), which is an Archean granite-greenstone belt lithological association in a tectonic window located in the southwesternmost portion of the São Francisco craton (SFC). The CGC is an important segment of Paleo- to Mesoarchean continental crust to be integrated into paleogeographic reconstructions prior to the transition into the Paleoproterozoic. This investigation reports field relationships, 28 major and trace element compositions, U-Pb (zircon) geochronological results, and Hf and Sm-Nd isotope data for orthogneiss and amphibolite samples. The results indicate that the CGC records a complex Archean crustal evolution, where voluminous 2.97 Ga TTG tonalites and trondhjemites (εNd(t)=-4.7; TDM=3.24 Ga) were followed by 2.89 Ga sanukitoid tonalite production (εNd(t)=-1.9; TDM=3.02 Ga), broadly coeval with the development of the Fortaleza de Minas and Pitangui greenstone-belts. These events are interpreted to represent the initial stage of an important subduction-accretion tectonic cycle, which ended with the emplacement of 2.82-2.81 Ga high-K leucogranites and migmatization of the TTG-sanukitoid crust, with hybrid and two-mica, peraluminous compositions (εNd(t)=-8.0 to-8.6; TDM=3.57-3.34 Ga). The presence of inherited zircons with 207Pb/206Pb ages of 3.08 Ga, 3.29 Ga, 3.55 Ga and 3.62 Ga indicates that the Mesoarchean tectonic processes involved reworking of Meso- to Eo-archean crust. Renewed TTG magmatism took place at ca. 2.77 Ga represented by juvenile tonalite stocks (εNd(t)=+1.0 to-1.5; TDM=2.80-2.88 Ga) which intrude the TTG-greenstone belt association. Crustal stabilization was attained by 2.67 Ga, allowing for the emplacement of within-plate tholeiitic amphibolites (εNd(t)=-3.1; TDM=2.87 Ga). The CGC shows important tectonic diachronism with respect to other Archean terrains in the southern São Francisco craton, including an independent Meso- to Neoarchean crustal evolution.
  • loading
  • [1]
    Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., Dopico, C., 2016. Archean crustal evolution in the Southern São Francisco craton, Brazil:Constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos 266-267, 64-86
    [2]
    Alkmim, F.F., Teixeira, W., 2017. The Paleoproterozoic Mineiro belt and the Quadrilatero Ferrífero. In:Heilbron, M., Alkmim, F., Cordani, U.G. (Eds.), The São Francisco Craton and its Margins, Eastern Brazil. Regional Geology Review Series. Springer Verlag, Chapter 5, 71-94
    [3]
    Barbosa, J.S.F., Barbosa, R.G., 2017. The Paleoproterozoic Eastern Bahia orogenic domain. In:Heilbron, M., Alkmim, F., Cordani, U.G., Guest (Eds.), The São Francisco Craton and its Margins, Eastern Brazil. Regional Geology Review Series. SpringerVerlag, Chapter 4, 57-70
    [4]
    Barbosa, N.S., Teixeira, W., Bastos-Leal, L.R., Menezes Leal, A.B., 2013. Evolução crustal do setor Ocidental do Bloco Arqueano Gavião, Cráton do São Francisco, com base em evidências U-Pb, Sm-Nd e Rb-Sr. Rev. Geol. USP. Série Cient. 4, 63-88
    [5]
    Barbosa, N., Menezes Leal, A.B., Debruyne, D., Bastos-Leal, L.R., Barbosa, N.S., Marinho M., Mercês, L., Barbosa, J.S., Koproski, L.M., 2020. Paleoarchean to Paleoproterozoic crustal evolution in the Guanambi Correntina block (GCB), north São Francisco Craton, Brazil, unraveled by UPb Geochronology, Nd-Sr isotopes and geochemical constraints. Precambrian Res. 340, 105614
    [6]
    Bastos-Leal, L.R., Cunha, J.C., Cordani, U.G., Teixeira W., Nutman, A.P., Leal, A.B.M., Macambira, J.B., 2003. SHRIMP U-Pb, 207Pb/206Pb zircon dating, and Nd isotopic signature of the Umburanas Greenstone Belt, northern São Francisco Craton, Brazil. J. S. Am. Earth Sci. 15, 775-785
    [7]
    Bedard, J.H., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochem. Cosmochim. Acta 70, 1188-1214
    [8]
    Bédard, J. H. 2018. Stagnant lids and mantle overturns:implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19-49
    [9]
    Bersan, S.M., Danderfer Filho, A., Abreu, F.R., Lana, C., 2018. Petrography, geochemistry and geochronology of the potassic granitoids of the Rio Itacambiruçu supersuite:implications for the Meso- to neoarchean evolution of the Itacambira-Monte Azul block. Braz. J. Geol. 48, 1-24
    [10]
    Boynton, W.V., 1984. Geochemistry of the rare earth elements:meteorite studies. In:Henderson P. (Ed.). Rare-earth element geochemistry. Elsevier, 63-114
    [11]
    Bruno, H., Elizeu, V., Heilbron, M., Valeriano, C.M., Strachan, R. Fowler, M. Bersan, S., Moreira, H., Dussin, I.A., Eirado-Silva, L.G., Tupinambá, M. Almeida, J.C.H., Neto, C., Storey, C., 2020. Neoarchean and Rhyacian TTG-Sanukitoid suites in the southern São Francisco Paleocontinent, Brazil:Evidence for diachronous change towards modern tectonics. Geosc. Front. 11, 1763-1787
    [12]
    Bruno, H., Heilbron, M., Valeriano, C.M., Strachan, R., Fowler, M., Bersan, S., Moreira, H., Motta, R., Almeida, J., Carvalho, M., Storey, C., 2021. Evidence for a complex accretionary history preceding the amalgamation of Columbia:The Rhyacian Minas-Bahia Orogen, southern São Francisco Paleocontinent, Brazil. Gondwana Res 92, 149-171
    [13]
    Campos, J.C.S., Carneiro, M.A., Basei, M.A.S., 2003. U-Pb evidence for Neoarchean crustal reworking in southern São Francisco Craton (Minas Gerais, Brazil). Anais da Academia Brasileira de Ciências 75, 497-511
    [14]
    Campos Neto, M.C., 2000. Orogenic Systems from southwestern Gondwana:an approach to Brasiliano-Pan African Cycle and orogenic collage in southeastern Brazil. In:Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of South America. 31th Intern. Geol. Congr. Rio de Janeiro, Brazil, 335-365.
    [15]
    Carneiro, M.A., Teixeira W., Carvalho Junior, I.M., Fernandes, R.A. 1998. Ensialic tectonic setting of the Archean Rio das Velhas greenstone belt:Nd and Pb isotopic evidence from the Bonfim Metamorphic Complex, Quadrilátero Ferrífero, Brazil. Revista Brasileira de Geociências 28, 189-200
    [16]
    Cioffi, C. R., Campos Neto, M. C., Möller, A., Rocha, B, C., 2016. Paleoproterozoic continental crust generation events at 2.15 and 2.08 Ga in the basement of the southern Brasília Orogen, SE Brazil. Precambrian Res. 275, 176-196
    [17]
    Corfu, F., Hanchar, J.M., Hiskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures. Rev. Miner. Geochem. 53, 469-500
    [18]
    Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. Allen & Unwin, London, 450 p
    [19]
    Cruz, S.C.P., Peucat, J.J., Teixeira, L., Carneiro, M.A., Martins, A.A.M., Santana, J.S., Souza, J.S., Barbosa, J.S.F., Leal, A.B.M., Dantas, E., Pimentel, M., 2012. The Caraguataí syenitic suite, a ca. 2.7 Ga-old alkaline magmatism (petrology, geochemistry and U-Pb zircon ages) Southern Gavião block (São Francisco Craton), Brazil. J. S. Am. Earth Sci. 37, 1-18
    [20]
    Cutts, K., Lana, C., Moreira, H., Alkmim, F., Peres, G., 2020. Zircon U-Pb and Lu-Hf recordfrom high-grade complexes within the Mantiqueira complex:first evidence of juvenile crustal input at 2.4-2.2 Ga and implications for the Palaeoproterozoic evolution of the São Francisco Craton. Precambrian Res. 338, 105567
    [21]
    Dantas, E.L., Souza, Z.S., Wernick, E., Hackspacher, P.C., Martin, H., Xiaodong, D., Li, J.W., 2013. Crustal growth in the 3.4-2.7 Ga Sao Jose de Campestre Massif, Borborema Province, NE Brazil. Precambrian Res. 227, 120-156
    [22]
    Degler, R., Pedrosa-Soares, A., Novo, T., Tedeschi, M., Silva, L.C., Dussin, I., Lana, C., 2018. Rhyacian-Orosirian isotopic records from the basement of the Araçuaí-Ribeira orogenic system (SE Brazil):links in the Congo-São Francisco palaeocontinent. Precambrian Res. 317, 179-195
    [23]
    De Paolo, D.J., 1981. Neodymium isotopes in the Colorado Front Range and crustal mantle evolution in the Proterozoic. Nature 291, 193-197
    [24]
    Farina F., Albert, C., Lana, C., 2015. The Neoarchean transition between medium- and high-K granitoids:Clues from the Southern São Francisco Craton (Brazil). Precambrian Research, 266, 375-394
    [25]
    Farina, F., Albert, C., Martínez-Dopico, C., Aguilar Gil, C., Moreira, H., Hippertt, J.P., Cutts, K., Alkmim, F.F., Lana, C., 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil):current models and open questions. J. S. Am. Earth Sci. 68, 4-21
    [26]
    François, C., Philippot, P., Rey, P., Rubatto, D., 2014. Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth and Planet. Sci. Lett. 396, 235-251
    [27]
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048
    [28]
    Gerya, T. 2014. Precambrian geodynamics:Concepts and models. Gondwana Res. 25, 442-463
    [29]
    Halla, J., 2005. Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland:Pb and Nd isotopic constraints on crust-mantle interactions. Lithos 79 (1-2), 161-178
    [30]
    Halla, J., van Hunen, J., Heilimo, E., Hölttä, P., 2009. Geochemical and numerical constraints on Neoarchaean plate tectonics. Precambrian Res. 174, 155-162
    [31]
    Hartmann, L., Endo, I., Suíta, M.T.F., Santos, J.O.S. Frantz, J.C., Carneiro, M.A., McNaughton, N.J., Barley, M., 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U Pb isotopes. J. S. Am. Earth Sci. 20, 273-285
    [32]
    Heilbron, M., Ribeiro, A., Valeriano, C.M., Paciullo, F.V., Almeida, J.C.H., Trouw, R.J.A., Tupinambá, M., Eirado, L.G., Cordani, U.G., 2017. The Ribeira Belt. In:Heilbron, M., Alkmim, F., Cordani U. (Eds.), The São Francisco Craton and its Margins, Eastern Brazil. Regional Geology Review Series. Springer-Verlag, Chapter 15, pp. 277-302.
    [33]
    Heilimo, E., Halla, J., Hölttä, P., 2010. Discrimination and origin of the sanukitoid series:Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 115, 27-39
    [34]
    Jiang, N., Guo, J., Fan, W., Hu, J., Zong, K., Zhang, S., 2016. Archean TTGs and sanuk-itoids from the Jiaobei terrain, North China craton:insights into crustal growth and mantle metasomatism. Precambrian Res.281, 656-672
    [35]
    Lana, C., Alkmim, F.F., Armstrong, R., Scholz, R., Romano, R., Nalini Jr., H.A., 2013. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. Precambrian Res. 231, 157-173
    [36]
    Larionova, Y.O., Samsonov, A.V. & Shatagin, K.N. 2007. Sources of Archean sanukitoids (High-Mg subalkaline granitoids) in the Karelian craton:Sm-Nd and Rb-Sr isotopic-geochemical evidence. Petrology 15, 530-550
    [37]
    Laurent, O., Martin, H., Moyen, J.F., Doucelance, R., 2014. The diversity and evolution of late Archean granitoids:evidence for the onset of 'modern-style' plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208-235
    [38]
    Machado, N., Noce, C.M., Ladeira, E.A., Oliveira, O.B., 1992. U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil. Geol. Soc. Am. Bull. 104, 1221-1227
    [39]
    Machado, N., Valladares, C., Heilbron, M., Valeriano, C., 1996a. U-Pb geochronology of the central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambrian Res. 69, 347-361
    [40]
    Machado, N., Schrank, A., 1989. Geocronologia U-Pb no maciço de Piumhi-resultados preliminares. In:Simposio de Geologia de Minas Gerais 5, Belo Horizonte. Anais. SBG, Núcleo Minas Gerais, Bol. 10, pp. 45-49
    [41]
    Machado, N., Schrank, A., Noce, C.M., Gauthier, G., 1996b. Ages of detrital zircon from Archean-Paleoproterozoic sequences:Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth Planet Sci. Lett. 141, 259-276
    [42]
    Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753-756
    [43]
    Martin, H., Peucat, J.J., Sabaté, P., Cunha, J.C., 1997. Crustal evolution in early Archean of South America:example of Sete Voltas massif, Bahia state, Brazil. Precambrian Res. 82, 35-62
    [44]
    Martin, H., Moyen, J.F., Rapp, R., 2009. The sanukitoid series:magmatism at the Archaean-Proterozoic transitions. Trans. R. Soc. Edinb. Earth Sci. 100, 15-33
    [45]
    Martínez Dopico, C.I., Lana, C., Moreira, H.S., Cassino, L.F., Alkmim, F.F., 2017. U-Pb ages and Hf-isotope data of detrital zircons from the late Neoarchean-Paleoproterozoic Minas Basin, SE Brazil. Precambrian Res. 291, 143-161
    [46]
    McDonough, W.F., Sun, W., 1995. The composition of the Earth. Chem. Geol. 120 (3-4), 223-253
    [47]
    Moreira, H., Lana, C., Nalini, H.A., 2016. The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil. Geosc. Front. 9, 977-995
    [48]
    Moreira, H., Seixas, L., Storey, C., Fowler, M., Lasalle, S., Stevenson, R., Lana, C., 2018. Evolution of Siderian juvenile crust to Rhyacian high Ba-Sr magmatism in the Mineiro Belt, southern São Francisco Craton. Precambrian Res. 275, 84-99
    [49]
    Moyen, J.F., Laurent, O., 2018. Archean tectonic systems? A view from igneous rocks. Lithos 302-303, 99-125
    [50]
    Mulder, J.A., Nebel, O., Gardiner, N.J., Cawood, P.A., Winwright, A.N., Ivanic, T.J., 2021. Crustal rejuvenation stabilised Earth's first cratons. Nature Comm. 12, 3535
    [51]
    Noce, C.M., Machado, N., Teixeira, W., 1998. U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (Southern São Francisco Craton):age constraints for Archean and Paleoproterozoic magmatism and metamorphism. Rev. Bras. Geoc. 28, 95-102
    [52]
    Noce, C.M., Zucchetti, M., Baltazar, O.F., Armstrong, R., Dantas, E.L., Renger, F.E., Lobato, L.M., 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil):U-Pb zircon dating of volcaniclastic graywackes. Precambrian Res. 141, 67-82
    [53]
    Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archaean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Res. 63, 179-188
    [54]
    O'Connor, J.T., 1965. A classification for Quartz-rich igneous rocks based on feldspar ratios. USGS Prof. Pap. 525-B, B79-B84
    [55]
    Oliveira, E.P., McNaughton, N., Armstrong, R., 2010. Mesoarchaean to Palaeoproterozoic growth of the northern segment of the Itabuna-Salvador-Curaçá orogen, São Francisco craton, Brazil. In:Kusky, T., Mingguo, Z., Xiao, Z. (Eds.), The Evolving Continents Understanding Processes of Continental Growth. Geol. Soc. London Spec. Publ. 338, 263-286
    [56]
    Oliveira, E.P., McNaughton, N.J., Zincone, S.A., Talavera C., 2020. Birthplace of the São Francisco Craton, Brazil:Evidence from 3.60 to 3.64 Ga Gneisses of the Mairi Gneiss Complex. Terra Nova 32, 281-289
    [57]
    Paquette, J.L., Barbosa, J.S.F., Rohais, S., Cruz, S.C.P., Goncalves, P., Peucat, J.J., Leal, A.B.M., Santos-Pinto, M., Martin, H., 2015. The geological roots of South America:4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambrian Res. 271, 49-55
    [58]
    Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In:Thorpe, R.S. (Ed.), Andesites. John Wiley & Sons, 525-548
    [59]
    Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Min. Petrol. 58, 63-81
    [60]
    Peucat, J.J., Santos Pinto, M., Martin, H., Barbosa, J.S., Fanning, M.C., 2003. SHRIMP U/Pb zircon ages up to 3.4-3.5 Ga in Archean and Paleoproterozoic granitoids of the Gavião Block, São Francisco Craton, Bahia, Brazil. IV South Am. Symp. Isotope Geol., Salvador. Short Papers, 252-255.
    [61]
    Piaia, P., Oliveira, E.P., Valeriano, C.M., 2017. The 2.58 Ga Sao José do Jacuipe gabbro-anorthosite stratiform complex, Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil:Root of the Neoarchaean Caraiba continental arc? J. S. Am. Earth Sci.79, 326-341
    [62]
    Pimentel, M.M., Ferreira Filho, C.F., 2002. Idade Sm-Nd de komatiitos do Greenstone belt do Morro do Ferro, Fortaleza de Minas (MG). Rev. Bras. Geoc. 32, 147-148
    [63]
    Pinheiro, M.A.P., Guice, G.L., Magalhães, J.R., 2021. Archean-Ediacaran evolution of the Campos Gerais Domain-A reworked margin of the São Francisco paleocontinent (SE Brazil):Constraints from metamafic-ultramafic rocks. Geosc. Front. 101201. DOI: 10.1016/j.gsf.2021.101201
    [64]
    C.P. Pinto M.A. Silva Mapa Geológico do Estado de Minas Gerais (Geological Map of Minas Gerais State), Escala 1:1.000.000 2014 Companhia de Desenvolvimento Econômico de Minas Gerais, CODEMIG e Serviço Geológico do Brasil, Belo Horizonte, MG (in Portuguese).
    [65]
    Rajesh, H.M., Belyanin, G.A., Van Reenen, D.D., 2018. Three tier transition of Neoarchean TTG-sanukitoid magmatism in the beit bridge complex, Southern Africa. Lithos 296-299, 431-451
    [66]
    Roman, A., Arndt, N., 2020. Differentiated Archean oceanic crust:Its thermal structure, mechanical stability and a test of the sagduction hypothesis. Geoch. et Cosmoch. Acta 278, 65-77
    [67]
    Rossignol, C., Lana, C., Alkmim, F.F., 2020. Geodynamic evolution of the Minas Basin, southern São Francisco Craton (Brazil), during the early Paleoproterozoic:Climate or tectonic? J. South Am. Earth Sci. 101, 102628
    [68]
    Shand, S.J., 1943. Eruptive Rocks, 2nd ed. John Wiley, New York, 444 p
    [69]
    Silva, L.C., Pedrosa-Soares, A.C., Armstrong, R., Pinto, C.P., Magalhães, J.T.R., Pinheiro, M.A.P., Santos, G.G., 2016. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement:the Porteirinha domain (northern Araçuaí orogen, Brazil). J. S. Am. Earth Sci. 68, 50-67
    [70]
    Simon, M.B., Bongiolo, E.M., Ávila, C.A., Oliveira, E.P., Teixeira, W., Stohler, R.C., Oliveira, F.V.S., 2018. Neoarchean reworking of TTG-like crust in the southernmost portion of the São Francisco Craton:U-Pb zircon dating and geochemical evidence from the São Tiago Batholith. Precambrian Res. 314, 353-376
    [71]
    Smithies, R.H., Lu, Y., Kirkland, C.L., Johnson, T.E., Mole, D.R., Champion, D.C., Martin, L., Jeon, H., Wingate, M.T.D., Johnson, S.P., 2021. Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature 592, 70-75
    [72]
    Soares, M.B., Corrêa Neto, A.V., Fabricio-Silva, W., 2020. The development of a Meso- to Neoarchean rifting-convergence collision-collapse cycle over an ancient thickened protocontinent in the south São Francisco craton, Brazil. Gondwana Res. 77, 40-66
    [73]
    Teixeira, W., Carneiro, M.A., Noce, C.A., Machado, N., Sato, K., Taylor, P.N., 1996. Pb, Sr and Nd isotope constraints on the Archean evolution of gneissic granitoid complexes in the southern São Francisco Craton, Brazil. Precambrian Res. 78, 151-164
    [74]
    Teixeira, W., Oliveira, E.P., Marques, L.S., 2017. Nature and Evolution of the Archean Crust of the São Francisco Craton. In:Heilbron, M., Alkmim, F., Cordani, U. (Eds.), São Francisco Craton, Eastern Brazil:Tectonic genealogy of a Miniature Continent. Springer, 29-57
    [75]
    Trouw, R.A.J., Paciullo, F.V.P., Ribeiro, A., 2002. Geologia da Folha Caxambu, escala de 1:100.000. Mapa geológico e texto explicativo 2002 CODEMIG, Belo Horizonte (in Portuguese).
    [76]
    Trouw, R.A.J., Peternel, R., Ribeiro, A., Heilbron, M., Vinagre, R., Duffles, P., Trouw, C.C., Fontainha, M., Kussama, H.H., 2013. A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. J. S. Am. Earth Sci. 48, 43-57
    [77]
    Turbay, C.V.G., Valeriano, C.M., Rossi, A., Rocha e Silva, V.G.M., 2008. Geologia do Complexo Campos Gerais ao sul de Alpinópolis, sudoeste de Minas Gerais. Geonomos 16, 79-90 (in Portuguese)
    [78]
    Turbay, C.V.G., Valeriano, C.M., 2012. Litogeoquímica do Complexo Campos Gerais e granitoides intrusivos, Arqueano/Paleoproterozoico, Brasil. Braz. J. Geol. 42, 663-689 (in Portuguese)
    [79]
    Valeriano, C.M., Machado, N., Simonetti, A., Valladares, C.S., Seer, H.J., Simões, L.S.A., 2004. U-Pb geochronology of the southern Brasília belt (SE-Brazil):sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Res. 130, 27-55
    [80]
    Verma, S.K., Oliveira, E.P., Silva, P.M., Moreno, J.A., Amaral, W.S., 2017. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil:Implications for the origin, evolution, and tectonic setting. Lithos 284-285, 560-577
    [81]
    Wiemer, D., Schrank, C.E., Murphy, D.T., Wenham, L., Allen, C.M., 2018. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nature Geosc. 11, 357-361
    [82]
    Windley, B.F., Kusky, T., Polat, A., 2020. Onset of plate tectonics by the Eoarchean. Precambrian Res 352, 105980
    [83]
    Zincone, S.A., Oliveira, E.P., Ribeiro, B.P., Marinho, M.M., 2020. High-K granites between the Archean Gavião and Jequié blocks, São Francisco Craton, Brazil:Implications for cratonization and amalgamation of the Rhyacian Atlantica continent. J. S. Am. Earth Sci. 105, 102920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (38) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return