Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Thomas Déhais, Stepan M. Chernonozhkin, Pim Kaskes, Sietze J. de Graaff, Vinciane Debaille, Frank Vanhaecke, Philippe Claeys, Steven Goderis. Resolving impact volatilization and condensation from target rock mixing and hydrothermal overprinting within the Chicxulub impact structure[J]. Geoscience Frontiers, 2022, 13(5): 101410. doi: 10.1016/j.gsf.2022.101410
Citation: Thomas Déhais, Stepan M. Chernonozhkin, Pim Kaskes, Sietze J. de Graaff, Vinciane Debaille, Frank Vanhaecke, Philippe Claeys, Steven Goderis. Resolving impact volatilization and condensation from target rock mixing and hydrothermal overprinting within the Chicxulub impact structure[J]. Geoscience Frontiers, 2022, 13(5): 101410. doi: 10.1016/j.gsf.2022.101410

Resolving impact volatilization and condensation from target rock mixing and hydrothermal overprinting within the Chicxulub impact structure

doi: 10.1016/j.gsf.2022.101410
Funds:

n State Government and the National Autonomous University of Mexico.

project G0A6517N), the Belgian Federal Science Policy Office (BELSPO

project Chicxulub), the Excellence of Science Program (EoS project ET-HoME ID 30442502), and the VUB Strategic Research Program. Pim Kaskes thanks FWO for the personal PhD fellowship awarded (projects 11E6619N, 11E6621N). Vinciane Debaille thanks the Fonds de la Recherche Scientifique (FRS-FNRS) for support. Stepan Chernonozhkin acknowledges his postdoctoral fellowship from the FWO EoS project ET-HoME. The FWO is acknowledged for providing the funding for the acquisition of the MC-ICP-MS instrumentation (ZW15-02-G0H6216N). Frank Vanhaecke acknowledges the support from FWO under the form of the aforementioned EoS project and BOF-UGent. This study used samples provided by IODP-ICDP Expedition 364, which was jointly funded by the International Ocean Discovery Program and the International Continental Scientific Drilling Program, with contributions and logistical support from the Yucatá

The authors thank the valuable comments made by Ryan Mathur, Lucy McGee, and a third anonymous reviewer as well as associate editor Stijn Glorie that helped to improve this manuscript. We warmly thank Wendy Debouge, Sabrina Cauchies, and Jeroen de Jong for their assistance with the sample preparation and the ICP-OES, ICP-MS and MC-ICP-MS analysis at Laboratoire G-Time (Université

Libre de Bruxelles). This work is supported by the Research Foundation Flanders (FWO

  • Received Date: 2022-01-06
  • Accepted Date: 2022-05-19
  • Rev Recd Date: 2022-05-07
  • Publish Date: 2022-05-23
  • This work presents isotopic data for the non-traditional isotope systems Fe, Cu, and Zn on a set of Chicxulub impactites and target lithologies with the aim of better documenting the dynamic processes taking place during hypervelocity impact events, as well as those affecting impact structures during the post-impact phase. The focus lies on material from the recent IODP-ICDP Expedition 364 Hole M0077A drill core obtained from the offshore Chicxulub peak ring. Two ejecta blanket samples from the UNAM 5 and 7 cores were used to compare the crater lithologies with those outside of the impact structure. The datasets of bulk Fe, Cu, and Zn isotope ratios are coupled with petrographic observations and bulk major and trace element compositions to disentangle equilibrium isotope fractionation effects from kinetic processes. The observed Fe and Cu isotopic signatures, with δ56/54Fe ranging from -0.95‰ to 0.58‰ and δ65/63Cu from -0.73‰ to 0.14‰, mostly reflect felsic, mafic, and carbonate target lithology mixing and secondary sulfide mineral formation, the latter associated to the extensive and long-lived (>105 years) hydrothermal system within Chicxulub structure. On the other hand, the stable Zn isotope ratios provide evidence for volatility-governed isotopic fractionation. The heavier Zn isotopic compositions observed for the uppermost part of the impactite sequence and a metamorphic clast (δ66/64Zn of up to 0.80‰ and 0.87‰, respectively) relative to most basement lithologies and impact melt rock units indicate partial vaporization of Zn, comparable to what has been observed for Cretaceous-Paleogene boundary layer sediments around the world, as well as for tektites from various strewn fields. In contrast to previous work, our data indicate that an isotopically light Zn reservoir (δ66/64Zn down to -0.49‰), of which the existence has previously been suggested based on mass balance considerations, may reside within the upper impact melt rock (UIM) unit. This observation is restricted to a few UIM samples only and cannot be extended to other target or impact melt rock units. Light isotopic signatures of moderately volatile elements in tektites and microtektites have previously been linked to (back-)condensation under distinct kinetic regimes. Although some of the signatures observed may have been partially overprinted during post-impact processes, our bulk data confirm impact volatilization and condensation of Zn, which may be even more pronounced at the microscale, with variable degrees of mixing between isotopically distinct reservoirs, not only at proximal to distal ejecta sites, but also within the lithologies associated with the Chicxulub impact crater.
  • loading
  • [1]
    Abramov, O., Kring, D.A., 2007. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteorit. Planet. Sci. 42, 93-112. https://doi.org/10.1111/j.1945-5100.2007.tb00220.x
    [2]
    Ackerman, L., Žák, K., Skála, R., Rejšek, J., Křížová, Š., Wimpenny, J., Magna, T., 2020. Sr-Nd-Pb isotope systematics of Australasian tektites:Implications for the nature and composition of target materials and possible volatile loss of Pb. Geochim. Cosmochim. Ac. 276, 135-150. https://doi.org/10.1016/j.gca.2020.02.025
    [3]
    Barnes, S-J., 2016. Chalcophile Elements. In:White, W. (Ed.), Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham.
    [4]
    Baxter, D.C., Rodushkin, I., Engström, E., Malinovsky, D., 2006. Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 21, 427-430. https://doi.org/10.1039/b517457k
    [5]
    Bralower, T.J., Cosmidis, J., Fantle, M.S., Lowery, C.M., Passey, B.H., Gulick, S.P.S., Morgan, J.V., Vajda, V., Whalen, M.T., Wittmann, A., Artemieva, N., Farley, K., Goderis, S., Hajek, E., Heaney, P.J., Kring, D.A., Lyons, S.L., Rasmussen, C., Sibert, E., Rodriguez Tovar, F.J., Turner-Walker, G., Zachos, J.C., Carte, J., Chen, S.A., Cockell, C., Coolen, M., Freeman, K.H., Garber, J., Gonzalez, M., Gray, J.L., Grice, K., Jones, H.L., Schaefer, B., Smit, J., Tikoo, S.M., 2020. The Habitat of the Nascent Chicxulub Crater. Am. Geophys. Uni. Adv. 1. https://doi.org/10.1029/2020av000208
    [6]
    Burtt, D.G., Henkes, G.A., Yancey, T.E., Schrag, D., 2022. Hot atmospheric formation of carbonate accretionary lapilli at the Cretaceous-Paleogene boundary, Brazos River, Texas, from clumped isotope thermometry. Geology 50, 636-640. https://doi.org/10.1130/G49674.1
    [7]
    Chernonozhkin, S.M., González de Vega, C., Artemieva, N., Soens, B., Belza, J., Bolea-Fernandez, E., van Ginneken, M., Glass, B.P., Folco, L., Genge, M.J., Claeys, Ph., Vanhaecke, F., Goderis, S., 2021. Isotopic evolution of planetary crusts by hypervelocity impacts evidenced by Fe in microtektites. Nat. Commun. 12, 5646. https://doi.org/10.1038/s41467-021-25819-6
    [8]
    Craddock, P.R., Dauphas, N., 2011. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sc. Lett. 303, 121-132. https://doi.org/10.1016/j.epsl.2010.12.045
    [9]
    Creech, J.B., Moynier, F., 2019. Tin and zinc stable isotope characterisation of chondrites and implications for early Solar System evolution. Chem. Geol. 511, 81-90. https://doi.org/10.1016/j.chemgeo.2019.02.028
    [10]
    Creech, J.B., Moynier, F., Koeberl, C., 2019. Volatile loss under a diffusion-limited regime in tektites:Evidence from tin stable isotopes. Chem. Geol. 528, 119279. https://doi.org/10.1016/j.chemgeo.2019.119279
    [11]
    Collins, G.S., Patel, N., Davison, T.M., Rae, A.S.P., Morgan, J.V., Gulick, S.P.S., IODP-ICDP Expedition 364 Science Party, and Third-Party Scientists, 2020. A steeply-inclined trajectory for the Chicxulub impact. Nat. Commun. 11, 1480. https://doi.org/10.1038/s41467-020-15269-x
    [12]
    Davis, A.M., Richter, F.M., 2014. Condensation and Evaporation of Solar System Materials. Treatise on Geochemistry, 335-360. https://doi.org/10.1016/b978-0-08-095975-7.00112-1
    [13]
    de Graaff, S.J., Kaskes, P., Déhais, T., Goderis, S., Debaille, V., Ross, C.H., Gulick, S.P.S., Feignon, J.-G., Ferrière, L., Koeberl, C., Smit, J., Mattielli, N., Claeys, Ph., 2022. New insights into the formation and emplacement of impact melt rocks within the Chicxulub impact structure, following the 2016 IODP-ICDP Expedition 364. Geol. Soc. Am. Bull. 134, 293-315. https://doi.org/10.1130/B35795.1
    [14]
    Dehant, V., Debaille, V., Dobos, V., Gaillard, F., Gillmann, C., Goderis, S., Grenfell, J.L., Höning, D., Javaux, E.J., Karatekin, Ö., Morbidelli, A., Noack, L., Rauer, H., Scherf, M., Spohn, T., Tackley, P., Van Hoolst, T., Wünnemann, K., 2019. Geoscience for understanding habitability in the Solar System and beyond. Space Sci. Rev. 215. https://doi.org/10.1007/s11214-019-0608-8
    [15]
    Doucet, L.S., Laurent, O., Ionov, D.A., Mattielli, N., Debaille, V., Debouge, W., 2020. Archean lithospheric differentiation:Insights from Fe and Zn isotopes. Geology 48, 1028-1032. https://doi.org/10.1130/g47647.1
    [16]
    Day, J.M.D., Moynier, F., Meshik, A.P., Pradivtseva, O.V., Petit, D.R., 2017. Evaporative fractionation of zinc during the first nuclear detonation. Sc. Adv. 3, e1602668. https://doi.org/10.1126/sciadv.1602668
    [17]
    Feignon, J-G., de Graaff, S.J., Ferrière, L., Kaskes, P., Déhais, T., Goderis, S., Claeys, Ph., Koeberl, C., 2021. Chicxulub impact structure, IODP-ICDP Expedition 364 drill core:Geochemistry of the granite basement. Meteorit. Planet. Sci. 56, 1243-1273. https://doi.org/10.1111/maps.13705
    [18]
    Feignon, J-G., Schulz, T., Ferrière, L., Goderis, S., de Graaff, S.J., Kaskes, P., Déhais, T., Claeys, Ph., Koeberl, C., 2022. Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak ring, Mexico. Geochim. Cosmochim. Ac. 323, 74-101. https://doi.org/10.1016/j.gca.2022.02.006
    [19]
    Goderis, S., Sato, H., Ferrière, L., Schmitz, B., Burney, D., Kaskes, P., Vellekoop, J., Wittmann, A., Claeys, Ph., de Graaff, S.J., Déhais, T., de Winter, N.J., Elfman, M., Feignon, J.-G., Ishikawa, A., Koeberl, C., Kristiansson, P., Neal, C.R., Owens, J.D., Schulz, T., Sinnesael, M., Vanhaecke, F., Van Malderen, S.J.M., Bralower, T.J., Gulick, S.P.S., Lowery, C.M., Morgan, J.V., Smit, J., Whalen, M.T., the IODP-ICDP Expedition 364 Scientists, 2021. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sc. Adv. 7, eabe3647. https://doi.org/10.1126/sciadv.abe3647.
    [20]
    Gong, Y., Xia, Y., Huang, F., Yu, H., 2017. Average iron isotopic compositions of the upper continental crust:constrained by loess from the Chinese Loess Plateau. Ac. Geochim. 36, 125-131. https://doi.org/10.1007/s11631-016-0131-5
    [21]
    González de Vega, C., Chernonozhkin, S.M., Grigoryan, R., Costas-Rodeíguez, M., Vanhaecke, F., 2020. Characterization of the new isotopic reference materials IRMM-524A and ERM-AE143 for Fe and Mg isotopic analysis of geological and biological samples. J. Anal. Atom. Spectrom. 35, 2517-2529. https://doi.org/10.1039/d0ja00225a
    [22]
    Gornostaeva, T.A., Mokhov, A.V., Kartashov, P.M., Bogatikov, O.A., 2019. Comparison of the compositions and microstructures of terrestrial and Lunar impact glasses:Samples from the Zhamanshin Crater and Luna 16, 20, and 24 Missions. Petrology 27, 95-107. https://doi.org/10.1134/s0869591119010028
    [23]
    Gulick, S.P.S., Barton, P.J., Christeson, G.L., Morgan, J.V., McDonald, M., Mendoza-Cervantes, K., Pearson, Z.F., Surendra, A., Urrutia-Fucugauchi, J., Vermeesch, P.M., Warner, M.R., 2008. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat. Geosci. 1, 131-135. https://doi.org/10.1038/ngeo103
    [24]
    Gulick, S.P.S., Bralower, T.J., Ormö, J., Hall, B., Grice, K., Schaefer, B., Lyons, S., Freeman, K.H., Morgan, J.V., Artemieva, N., Kaskes, P., de Graaff, S.J., Whalen, M.T., Collins, G.S., Tikoo, S.M., Verhagen, C., Christeson, G.L., Claeys, Ph., Coolen, M.J.L., Goderis, S., Goto, K., Grieve, R.A.F., McCall, N., Osinski, G.R., Rae, A.S.P., Riller, U., Smit, J., Vajda, V., Wittmann, A., the Expedition 364 Scientists, 2019. The first day of the Cenozoic. P. Natl. Acad. Sci. USA 116, 19342-19351. https://doi.org/10.1073/pnas.1909479116
    [25]
    Hecht, L., Wittmann, A., Schmitt, R.-T., and Stöffler, D., 2004. Composition of impact melt particles and the effects of post-impact alteration in suevitic rocks at the Yaxcopoil-1 drill core, Chicxulub crater, Mexico. Meteorit. Planet. Sci. 39, 1169-1186. https://doi.org/10.1111/j.1945-5100.2004.tb01135.x
    [26]
    Hildebrand, A.R., Penfield, G.T., Kring, D.A., Pilkington, M., Camargo Z., Antonio; Jacobsen, S.B., Boynton, W.V., 1991. Chicxulub Crater:A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867-871. https://doi.org/10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2
    [27]
    Kamber, B.S., Schoenberg, R., 2020. Evaporative loss of moderately volatile metals from the superheated 1949 Ma Sudbury impact melt sheet inferred from stable Zn isotopes. Earth Planet. Sc. Lett. 544, 116356. https://doi.org/10.1016/j.epsl.2020.116356
    [28]
    Kaskes. P., de Graaff, S.J., Feignon, J.-G., Déhais, T., Goderis, S., Ferrière, L., Koeberl, C., Smit, J., Wittmann, A., Gulick, S.P.S., Debaille, V., Mattielli, N., Claeys, Ph., 2022. Formation of the crater suevite sequence from the Chicxulub peak ring:A petrographic, geochemical, and sedimentological characterization. Geol. Soc. Am. Bull. 134, 895-927. https://doi.org/10.1130/B36020.1
    [29]
    Kring, D.A, Tikoo, S.M., Schmieder, M., Riller, U., Rebolledo-Vieyra, M., Simpson, S.L., Osinski, G.R., Gattacceca, J., Wittmann, A., Verhagen, C.M., Cockell, C.S., Coolen, M.J.L., Longstaffe, F.J., Gulick, S.P.S., Morgan, J.V., Bralower, T.J., Chenot, E., Christeson, G.L., Claeys, Ph., Ferrière, L., Gebhardt, C., Goto, K., Green, S.L., Jones, H., Lofi, J., Lowery, C.M., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A.E., Poelchau, M.H., Rae, A.S.P., Rasmussen, C., Sato, H., Smit, J., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Xiao, L., Yamaguchi, K.E., 2020. Probing the hydrothermal system of the Chicxulub impact crater. Sc. Adv. 6, eaaz3053. https://doi.org/10.1126/sciadv.aaz3053
    [30]
    Kaskes, P., Déhais, T., de Graaff, S.J., Goderis, S., Claeys, Ph., 2021. Micro-X-ray fluorescence (μXRF) analysis of proximal impactites:High-resolution element mapping, digital image analysis, and quantifications. Large Meteorite Impacts and Planetary Evolution VI. in Reimold, W.U., and Koeberl, C., eds., Geol. Soc. Am. Special Paper 550, pp. 171-206. https://doi.org/10.1130/2021.2550(07)
    [31]
    Magna, T., Jiang, Y., Skála, R., Wang, K., Sossi, P.A., Žák, K., 2021. Potassium elemental and isotope constraints on the formation of tektites and element loss during impacts. Geochim. Cosmochim. Ac. 312, 321-342. https://doi.org/10.1016/j.gca.2021.07.022
    [32]
    Maréchal, C.N., Nicolas, E., Douchet, C., Albarède, F., 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophy. Geosyst. 1. https://doi.org/10.1029/1999GC000029
    [33]
    Mathur, R., Mahan, B., Spencer, M., Godfrey, L., Landman, N., Garb, M., Pearson, D.G., Liu, S-A., Oboh-Ikuenobe, F.E., 2021. Fingerprinting the Cretaceous-Paleogene boundary impact with Zn isotopes. Nat. Commun. 12, 4128. https://doi.org/10.1038/s41467-021-24419-8
    [34]
    McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    [35]
    Morgan, J.V., Warner, M., the Chicxulub Working Group, Brittan, J., Buffler, R., Camargo, A., Christeson, G., Denton, P., Hildebrand, A., Hobbs, R., Macintyre, H., Mackenzie, G., Maguire, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., Snyder, D., Suarez, G., Trejo, A., 1997. Size and morphology of the Chicxulub impact crater. Nature 390, 472-476. https://doi.org/10.1038/37291
    [36]
    Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot, E., Christeson, G., Claeys, Ph., Cockell, C., Collins, G.S., Coolen, M.J.L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D.A, Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G.R., Perez-Cruz, L., Pickersgill, A.E., Poelchau, M.H., Rae, A.S.P., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D.R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Wittmann, A., Yamaguchi, K.E., Zylberman, W., 2016. The formation of peak rings in large impact craters. Science 354, 878-882. https://doi.org/10.1126/science.aah6561
    [37]
    Morgan, J.V., Gulick, S.P.S., Mellett, C.L., Green, S.L., the Expedition 364 Scientists, 2017. Chicxulub:Drilling the K-Pg Impact Crater. Proceedings of the IODP, Volume 364:College Station, Texas. https://doi.org/10.14379/iodp.proc.364.2017
    [38]
    Morgan, J.V., Bralower, T.J., Brugger, J., Wünnemann, K., 2022. The Chicxulub impact and its environmental consequences. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00283-y.
    [39]
    Moynier, F., Beck, P., Jourdan, F., Yin, Q.-Z., Reimold, U., Koeberl, C., 2009. Isotopic fractionation of zinc in tektites. Earth Planet. Sc. Lett. 277, 482-489. https://doi.org/10.1016/j.epsl.2008.11.020
    [40]
    Ni, P., Macris, C.A., Darling, E.A., Shahar,A., 2021. Evaporation-induced copper isotope fractionation:Insights from laser levitation experiments. Geochim. Cosmochim. Ac. 298, 131-148. https://doi.org/10.1016/j.gca.2021.02.007
    [41]
    Osinski, G.R., Grieve, R.A.F., Hill, P.J.A., Simpson, S.L., Cockell, C., Christeson, G.L., Ebert, M., Gulick, S.P.S., Melosh, H.J., Riller, U., Tikoo, S.M., Wittmann, A., 2020. Explosive interaction of impact melt and seawater following the Chicxulub impact event. Geology 48, 108-112. https://doi.org/10.1130/G46783.1
    [42]
    Petit, J.C.J., de Jong, J., Chou, L., Mattielli, N., 2008. Development of Cu and Zn Isotope MC-ICP-MS Measurements:Application to Suspended Particulate Matter and Sediments from the Scheldt Estuary. Geostand. Geoanal. Res. 32, 149-166. https://doi.org/10.1111/j.1751-908x.2008.00867.x
    [43]
    Pons, M.-L., Fujii, T., Rosing, M., Quitté, G., Télouk, P., Albarède, F., 2013. A Zn isotope perspective on the rise of continents. Geobiology 11, 201-214. https://doi.org/10.1111/gbi.12030
    [44]
    Rebolledo-Vieyra, M., Urrutia-Fucugauchi, J., Marin, L.E., Trejo-Garcia, A., Sharpton, V.L., Soler-Arechalde, A.M., 2000. UNAM Scientific Shallow-Drilling Program of the Chicxulub Impact Crater. Int. Geol. Rev. 42, 928-940. https://doi.org/10.1080/00206810009465118
    [45]
    Rodovská, Z., Magna, T., Žák, K., Skála, R., Brachaniec, T., Visscher, C., 2016. The fate of moderately volatile elements in impact events-Lithium connection between the Ries sediments and central European tektites. Meteorit. Planet. Sci. 51, 2403-2415. https://doi.org/10.1111/maps.12733
    [46]
    Rodovská, Z., Magna, T., Žák, K., Kato, C., Savage, P. S., Moynier, F., Skála, R., Ježek, J., 2017. Implications for behavior of volatile elements during impacts-Zinc and copper systematics in sediments from the Ries impact structure and central European tektites. Meteorit. Planet. Sci. 52, 2178-2192. https://doi.org/10.1111/maps.12922
    [47]
    Rouxel, O., Fouquet, Y., Ludden, J.N., 2004. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge. Econ. Geol. 99, 585-600. https://doi.org/10.2113/gsecongeo.99.3.585
    [48]
    Rudnick, R.L., Gao, S., 2003. 3.01-Composition of the Continental Crust. In:Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry 3, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4.
    [49]
    Schmitz, B., Andersson, P., Dahl, J., 1988. Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark. Geochim. Cosmochim. Ac. 52, 229-236. https://doi.org/10.1016/0016-7037(88)90072-5
    [50]
    Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, Ph., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieja, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., Willumsen, P.S., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214-1218. https://doi.org/10.1126/science.1177265
    [51]
    Simpson, S.L., Osinski, G.R., Longstaffe, F.J., Schmieder, M., Kring, D.A., 2020. Hydrothermal alteration associated with the Chicxulub impact crater upper peak-ring breccias. Earth Planet. Sc. Lett. 547, 116425. https://doi.org/10.1016/j.epsl.2020.116425
    [52]
    Smit, J., 1999. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annu. Rev. Earth Pl. Sc. 27, 75-113. https://doi.org/10.1146/annurev.earth.27.1.75
    [53]
    Sprain, C.J., Renne, P.R., Clemens, W.A., Wilson, G.P., 2018. Calibration of chron C29r:New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. Geol. Soc. Am. Bull. 130, 1615-1644. https://doi.org/10.1130/B31890.1
    [54]
    Stöffler, D., Grieve, R.A.F., 2007, Impactites, ch 2.11. In:Fettes, D., Desmons, J. (Eds.), Metamorphic Rocks:A Classification and Glossary of Terms, Recommendations of the International Union of Geologic. Cambridge University Press, Cambridge, UK, 82-92, 111-125, and 126-242
    [55]
    Swisher, C.C., Grajales-Nishimura, J.M., Montanari, A., Margolis, S.V., Claeys, Ph., Alvarez, W., Renne, P., Cedillo-Pardoa, E., Maurrasse, F.J-M.R., Curtis, G.H., Smit, J., McWilliams, M.O., 1992. Coeval 40Ar/39Ar Ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257, 954-958. https://doi.org/10.1126/science.257.5072.954
    [56]
    Tuchscherer, M.G., Reimold, W.U., Gibson, R.L., de Bruin, D., Späth, A., 2006. Major and trace element compositions of melt particles and associated phases from the Yaxcopoil-1 drill core, Chicxulub impact structure, Mexico. Meteorit. Planet. Sci. 41, 1361-1379. https://doi.org/10.1111/j.1945-5100.2006.tb00527.x
    [57]
    Urrutia-Fucugauchi, J., Marin, L., Trejo-Garcia, A., 1996. UNAM scientific drilling program of Chicxulub impact structure-Evidence for a 300 kilometer crater diameter. Geophys. Res. Lett. 23, 1565-1568. https://doi.org/10.1029/96gl01566
    [58]
    Urrutia-Fucugauchi, J., Chavez-Aguirre, J.M., Pérez-Cruz, L., De la Rosa, J.L., 2008. Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater. C. R. Geosci. 340, 801-810. https://doi.org/10.1016/j.crte.2008.09.001
    [59]
    Urrutia-Fucugauchi, J., Pérez-Cruz, L., Campos-Arriola, S.E., Escobar-Sánchez, E., Velasco-Villarreal, M., 2014. Magnetic susceptibility logging of Chicxulub proximal impact breccias in the Santa Elena borehole:implications for emplacement mode. Stud. Geophys. Geod. 58, 100-120. https://doi.org/10.1007/s11200-013-0803-0
    [60]
    Warren, P.H., 2008. Lunar rock-rain:Diverse silicate impact-vapor condensates in an Apollo-14 regolith breccia. Geochim. Cosmochim. Ac. 72, 3562-3585. https://doi.org/10.1016/j.gca.2008.04.031
    [61]
    Weyrauch, M., Zipfel, J., Weyer, S., 2019. Origin of metal from CB chondrites in an impact plume-A combined study of Fe and Ni isotope composition and trace element abundances. Geochim. Cosmochim. Ac. 246, 123-137. https://doi.org/10.1016/j.gca.2018.11.022
    [62]
    Whalen, M.T., Gulick, S.P.S., Lowery, C.M., Bralower, T.J., Morgan, J.V., Grice, K., Schaefer, B., Smit, J., Ormö, J., Wittmann, A., Kring, D.A., Lyon, S., Goderis, S., the IODP-ICDP Epedition 34 Scientists, 2020. Winding down the Chicxulub impact:The transition between impact and normal marine sedimentation near ground zero. Mar. Geol. 430, 106368. https://doi.org/10.1016/j.margeo.2020.106368
    [63]
    Wimpenny, J., Marks, N., Knight, K., Rolison, J.M., Borg, L., Eppich, G., Badro, J., Ryerson, F.J., Sanborn, M., Huyskens, M.H., Yin, Q-z., 2019. Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochim. Cosmochim. Ac. 259, 391-411. https://doi.org/10.1016/j.gca.2019.06.016
    [64]
    Wood, B.J., Smythe, D.J., Harrison, T., 2019. The condensation temperatures of the elements:A reappraisal. Am. Mineral. 104, 844-856. https://doi.org/10.2138/am-2019-6852ccby
    [65]
    Zhu, X.K., O'Nions, R.K., Guo, Y., Belshaw, N.S., Rickard, D., 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers. Chem. Geol. 163, 139-149. https://doi.org/10.1016/S0009-2541(99)00076-5
    [66]
    Zürcher, L., Kring, D.A., 2004. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteorit. Planet. Sci. 39, 1199-1221. https://doi.org/10.1111/j.1945-5100.2004.tb01137.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (47) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return