Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Shunbao Gao, Xin Chen, Youye Zheng, Nan Chao, Shunli Zheng, Hao Lin, Xiaojia Jiang, Song Wu. Discrepant chemical differentiation and magmatic-hydrothermal evolution of high-silica magmatism associated with Pb-Zn and W mineralization in the Lhasa terrane[J]. Geoscience Frontiers, 2022, 13(5): 101411. doi: 10.1016/j.gsf.2022.101411
Citation: Shunbao Gao, Xin Chen, Youye Zheng, Nan Chao, Shunli Zheng, Hao Lin, Xiaojia Jiang, Song Wu. Discrepant chemical differentiation and magmatic-hydrothermal evolution of high-silica magmatism associated with Pb-Zn and W mineralization in the Lhasa terrane[J]. Geoscience Frontiers, 2022, 13(5): 101411. doi: 10.1016/j.gsf.2022.101411

Discrepant chemical differentiation and magmatic-hydrothermal evolution of high-silica magmatism associated with Pb-Zn and W mineralization in the Lhasa terrane

doi: 10.1016/j.gsf.2022.101411
Funds:

We are deeply grateful to the Editorial Advisor Prof. M. Santosh and Associate Editor Prof. S. Glorie for the constructive comments and suggestions. Reviews by two anonymous reviewers greatly improved the manuscript and are gratefully acknowledged. We thank the staff of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan and Wuhan Sample Solution Analytical Technology Co for helping with bulk-rock major elementand trace element analyses, zircon U-Pb age and Hf determinations, and whole-rock major elements and rare earth elemental analyses. We acknowledge the Fundamental Research Funds for the National Foundation of China (42102058), open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource, Institute of Geology, Chinese Academy of Geological Sciences (No. J1901-16), Central Universities, and China University of Geosciences (Wuhan) (No. 2019132).

  • Received Date: 2022-01-03
  • Accepted Date: 2022-06-07
  • Rev Recd Date: 2022-05-08
  • Publish Date: 2022-06-09
  • High-silica (SiO2 > 70 wt.%) granites (HSGs) are the main source of W, Sn, and rare metals. However, abundant HSGs, temporally, spatially, and genetically associated with Pb-Zn mineralization, in the Lhasa terrane (LT), provided an ideal opportunity to study the key factors responsible for Pb-Zn enrichment, instead of W-Sn enrichment. Here we contribute to this topic through U-Pb dating of zircon and garnet, and whole-rock and Sr-Nd-Hf isotopic geochemistry of ore-related quartz porphyries in the Bangbule deposit and compared these results with published data from large and giant Pb-Zn and W deposits in the LT. The magmatism-alteration-mineralization event in the Bangbule deposit was recorded by robust zircon U-Pb ages of 77.3 ±0.9 Ma and hydrothermal garnet U-Pb ages of 75.7 ±4.8 Ma, which is 10-15 Ma earlier than the main Paleocene metallogenic event and the first record of late Cretaceous Pb-Zn polymetallic mineralization in the LT. The late Cretaceous-Paleocene magmatism and mineralization events are a response to the subduction of Neotethyan oceanic lithosphere, which occurred as a result of the collision of the Indian and Asian plates. These HSGs related to Pb-Zn mineralization, with high total-alkalis and low magnesian contents, are enriched in Ba, Th, and Rb, but depleted in Ti, Eu, Sr, and P. They belong to either the S-type, or I-type granites. The Sr-Nd-Hf isotopic compositions of the Pb-Zn mineralized granites demonstrate that they were generated by the partial melting of Proterozoic basement with or without mantle-derived melt input. This was consistent with the postulated source of W enrichment in the LT. The Pb-Zn and W related granites have similar zircon-Ti-saturation temperatures, comparable low whole-rock Fe2O3/FeO ratios, and zircon oxygen fugacity. This indicated that the Pb-Zn-W enrichment in the high-silica magma system could be attributed to a relatively reduced magma. The Pb-Zn related HSGs, abundant quartz and feldspar phenocrysts, and weak fractionation of twin-elements in whole-rock analysis, can be used to reconstruct a model of the magma reservoir. We postulate that these features could be reproduced by silica-rich crystal accumulation in a magma reservoir, with a loss of magmatic fluids. The magma associated with W mineralization exhibited a higher level of differentiation compared to the Pb-Zn related magma; however, different groups of zircon texture with varying rare earth elements and concomitance of rare earth elements tetrad effect and high fractionation of twin-elements in whole-rock are formed by a magmatic-hydrothermal transition in highly evolved system. As the source and oxygen fugacities of the Pb-Zn and W related magmas are similar, the absence of a giant W-Sn deposit in the LT may indicate that parent magmas with a low degree of evolution and magmatic-hydrothermal transition are not conducive to their formation. This implies that the rocks that originated as highly evolved silicate-rich parent magmas, with a high degree of magmatic-hydrothermal alteration, would need to be targeted for W-Sn mineral exploration in the LT. In summary, our results emphasize that variations in chemical differentiation and the evolution of high-silica magmatic-hydrothermal systems can lead to differences in Pb-Zn and W enrichment. This has implications for the evaluation of the mineral potential of high-silica granites and hence their attractiveness as targets for mineral exploration.
  • loading
  • [1]
    Bachmann, O., Bergantz, G.W., 2004. On the origin of crystal-poor rhyolites:extracted from batholithic crystal mushes. J. Petrol. 45(8), 1565-1582
    [2]
    Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., Vigneresse, J.L., 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition. Geology 44(3), 231-234
    [3]
    Ballouard, C., Massuyeau, M., Elburg, M.A., Tappe, S., Viljoen, F., Brandenburg, J.T., 2020. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth-Sci. Rev. 203, 103115
    [4]
    Bachmann, O., Huber, C., 2019. The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J. Petrol. 60(1), 3-18
    [5]
    Bao, Z., Sun, W., Zartman, R.E., Yao, J., Gao, X., 2017. Recycling of subducted upper continental crust:Constraints on the extensive molybdenum mineralization in the Qinling-Dabie orogen. Ore Geol. Rev. 81, 451-465
    [6]
    Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petr. 123, 323-333
    [7]
    Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J. Petrol. 32, 365-401
    [8]
    Chang, Z.S., Goldfarb, R.J., 2019. Mineral Deposits of China:An Introduction. Mineral Deposits of China. Society of Economic Geologists Special Publication 22, 1-12.
    [9]
    Chappell, B.W., White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Trans. Roy. Soc. Edinburgh:Earth Sci. 83:1-26
    [10]
    Chappell, B.W., 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535-551
    [11]
    Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types:25 years later. Aust. J. Earth Sci. 48, 489-499
    [12]
    Chappell, B.W., Bryant, C.J., Wyborn, D., 2012. Peraluminous I-type granites. Lithos 153, 142-153
    [13]
    Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.F., Ovtcharova, M., 2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?-an invited paper. Econ. Geol. 108(4), 565-584
    [14]
    Chen, X., Zheng, Y., Gao, S., Wu, S., Jiang, X., Jiang, J., Lin, C., 2020. Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny. Gondwana Res. 85, 103-123
    [15]
    Chen, X., Schertl, H.P., Gu, P., Zheng, Y., Xu, R., Zhang, J., Lin, C., 2021. Newly discovered MORB-Type HP garnet amphibolites from the Indus-Yarlung Tsangpo suture zone:Implications for the Cenozoic India-Asia collision. Gondwana Res. 90, 102-117
    [16]
    Chen, X., Schertl, H. P., Hart, E., Majka, J., Cambeses, A., Hernández-Uribe, D., Zheng, Y., 2022. Mobilization and fractionation of Ti-Nb-Ta during exhumation of deeply subducted continental crust. Geochim. Cosmochim. Acta 319, 271-295
    [17]
    Chen, J.Y., Yang, J.H., Zhang, J.H., Sun, J.F., Zhu, Y.S., Hartung, E., 2021. Generation of Cretaceous high-silica granite by complementary crystal accumulation and silicic melt extraction in the coastal region of southeastern China. GSA Bulletin. https://doi.org/10.1130/B35745.1
    [18]
    Crofu, F., Hanchar, J.M., Hoskin, P.W., 2003. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469-495
    [19]
    Collins,W.J., Beams, S.D., White, A.J.R., Chappel, B.W., 1982. Nature and origin of A -type granites with particular reference to Southeastern Australia. Contrib. Mineral. Petr. 80, 189-200
    [20]
    Deng, X.D., Li, J.W., Luo, T., Wang, H.Q., 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contrib. Mineral. Petr. 172, 1-11
    [21]
    Deering, C.D., Bachmann, O., 2010, Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet. Sci. Lett. 297, 324-331
    [22]
    Ding, S., Chen, Y.C., Tang, J.X., Xie, F.W., Hu, G.Y., Yang, Z.Y., Yang, H.Y., 2017. Relationship between Linzizong volcanic rocks and mineralization:A case study of Sinongduo epithermal Ag-Pb-Zn deposit. Miner. Deposits. 36(5), 1074-1092
    [23]
    Dostal, J., Kontak, D.J., Gerel, O., Shellnutt, J.G., Fayek, M., 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia:products of extreme magmatic fractionation and pervasive metasomatic fluid:rock interaction. Lithos 236, 173-189
    [24]
    Dou, X., Lin, Y., Jiang, Z., Yu, Z., Yi, J., Huang, L., Zheng, Y., 2021. Linking a fractionated magmatic system to skarn W-Mo mineralization in the Hahaigang deposit, Tibet:Implications for regional tungsten metallogeny and exploration. Ore Geol. Rev. 139, 104558
    [25]
    Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petr. 154, 429-437
    [26]
    Fu, Q., Yang, Z.S., Zheng, Y.C., Huang, K.X., Duan, L.F., 2014. Ar-Ar age of phlogopite from Longmala copper-iron-lead-zinc deposit in Tibet, and its geodynamic significance. Acta Petrol. Sin. 33, 283-293
    [27]
    Green, T.H., 1994, Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem. Geol. 117, 1-36
    [28]
    Halter, W.E., Webster, J.D., 2004. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chem. Geol. 210(1-4), 1-6
    [29]
    Hart, C.J., Goldfarb, R.J., Lewis, L.L., Mair, J.L., 2004. The Northern Cordilleran Mid-Cretaceous plutonic province:ilmenite/magnetite-series granitoids and intrusionrelated ineralization. Resour. Geol. 54, 253-280
    [30]
    Healy, B., Collins, W.J., Richards, S.W., 2004. A hybrid origin for Lachlan S-type granites:The Murrumbidgee Batholith example. Lithos 78, 197-216
    [31]
    Hildreth, W., 1981. Gradients in silicic magma chambers:implications for lithospheric magmatism. J. Geophys. Res.:Solid Earth. 86, 10153-10192
    [32]
    Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y., Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet. Sci. Lett. 220, 139-155
    [33]
    Hou, Z.Q., Duan, L.F., Lu, Y.J., Zheng, Y.C., Zhu, D.C., Yang, Z.M., Yang, Z.S., Wang, B.D., Pei, Y.R., Zhao, Z.D., McCuaig, T.C., 2015a. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 110, 1541-1575
    [34]
    Hou, Z.Q., Yang, Z.M., Lu, Y.J., Kemp, A., Zheng, Y.C., Li, Q.Y., Tang, J.X., Yang, Z.S., Duan, L.F., 2015b. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43, 247-250
    [35]
    Hoskin, P.W., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta. 69(3), 637-648
    [36]
    Hu, Z., Zhang, W., Liu, Y., Gao, S., Li, M., Zong, K., Chen, H., Hu, S., 2015. "Wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:application to lead isotope analysis. Anal. Chem. 87 (2), 1152-1157
    [37]
    Huang, L.-C., Jiang, S.-Y., 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:geochronology, petrogenesis and their relationship with W-mineralization. Lithos 202-203, 207-226
    [38]
    Huang, F., Bai, R., Deng, G., Liu, X., Li, X., 2021. Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites. Sci. Bull. 66(22), 2329-2336
    [39]
    Gao, Y.F., Wei, R.H., Hou, Z.Q., Tian, S.H., Zhao, R.S., 2008. Eocene high-MgO volcanism in southern Tibet:New constraints for mantle source characteristics and deep processes. Lithos 105, 63-72
    [40]
    Gao, Y.M., Chen, Y.C., Tang, J.X., Li, C., Li, X.F., Gao, M., Cai, Z.C., 2011a. Re-Os dating of molybdenite from the Yaguila porphyry molybdenum deposit in Gongbo'gyamda area, Tibet, and its geological significance. Geological Bulletin of China, 30, 1027-1036 (in Chinese with English abstract)
    [41]
    Gao, Y.M., Chen, Y.C., Wang, C.H., Hou, K.J., 2011b. Zircon Hf isotopic characteristics and constraints on petrogenesis of Mesozoic-Cenozoic magmatic rocks in Nyainqentanglha region, Tibet. Mineral. Deposita 30, 279-291 (in Chinese with English abstract)
    [42]
    Gao, S.B., 2015. Copper-iron polymetal metallogenic regularity and election of target areas in the western of Gangdise metallogenic belt, Tibet. Ph.D. thesis. China University of Geosciences, pp. 37-180 (in Chinese with English abstract).
    [43]
    Gao, S., Chen, X., Cheng, S., Zhang, Y., Zheng, Y., Jiang, J., Jiang, X., 2020. Syn-collisional magmatism at the Longgen Pb-Zn deposit, western Nyainqentanglha belt, Tibet:Petrogenesis and implications for regional polymetallic metallogeny. Ore Geol. Rev. 103730
    [44]
    Gao, S., Chen, X., Zhang, Y., Zheng, Y., Long, T., Wu, S., Jiang, X., 2021. Timing and genetic link of porphyry Mo and skarn Pb-Zn mineralization in the Chagele deposit, Western Nyainqentanglha belt, Tibet. Ore Geol. Rev. 129, 103929
    [45]
    Guynn, J.H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G., Ding, L., 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34(6), 505-508
    [46]
    Glazner, A.F., Coleman, D.S., Bartley, J.M., 2008. The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36(2), 183-186
    [47]
    Guo, N.X., Zhao, Z., Gao, J.F., Chen, W., Wang, D.H., Chen, Y.C., 2018. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China. Ore Geol. Rev. 94, 414-434
    [48]
    Irber, W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 63 (3-4), 489-508
    [49]
    Jahn, B.-M., Wu, F., Capdevila, R., Martineau, F., Zhao, Z., Wang, Y., 2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos 59, 171-198
    [50]
    Jiang, J.S., Zheng, Y.Y., Gao, S.B., Zhang, Y.C., Huang, J., Liu, J., Huang, L.L., 2018. The newly-discovered Late Cretaceous igneous rocks in the Nuocang district:Products of ancient crust melting trigged by Neo-Tethyan slab rollback in the western Gangdese. Lithos 308, 294-315
    [51]
    Jiang, W.C., Li, H., Evans, N.J., Wu, J.H., 2019. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, South China. Ore Geol. Rev. 115, 103160
    [52]
    Jiang, X., Chen, X., Zheng, Y., Gao, S., Zhang, Z., Zhang, Y., Zhang, S., 2020. Decoding the oxygen fugacity of ore-forming fluids from garnet chemistry, the Longgen skarn Pb-Zn deposit, Tibet. Ore Geol. Rev. 126, 103770
    [53]
    Jiang, X., Zheng, Y., Gao, S., Yan, J., Kang, Y., Jiang, G., Chen, X., 2021. In-situ U-Pb geochronology of Ti-bearing andradite as a practical tool for linking skarn alteration and Pb-Zn mineralization:A case study of the Mengya'a deposit, Tibet. Ore Geol. Rev. 104565
    [54]
    Ji, X., Yang, Z., Yu, Y., Shen, J., Tian, S., Meng, X., Liu, Y., 2012. Formation mechanism of magmatic rocks in Narusongduo lead-zinc deposit of Tibet:Evidence from magmatic zircon. Mineral. Deposita 31(4), 758-774
    [55]
    Ji, X.H., Meng, X.J., Yang, Z.S., Zhang, Q., Tian, S.H., Li, Z.Q., Yu, Y.S., 2014. The Ar-Ar geochronology of sericite from the cryptoexplosive breccia type Pb-Zn deposit in Narusongduo, Tibet and its geological significance. Geol. Explor. 50(2), 281-290
    [56]
    Kapp, P., DeCelles, P.G., 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319(3), 159-254
    [57]
    Linnen, R.L., Van Lichtervelde, M., Černý, P., 2012. Granitic pegmatites as sources of strategic metals. Elements 8(4), 275-280
    [58]
    Laurent, O., Björnsen, J., Wotzlaw, J.F., Bretscher, S., Silva, M.P., Moyen, J.F., Moyen, F., Ulmer, P., Bachmann, O., 2020. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nat. Geosci. 13(2), 163-169
    [59]
    Lee, C.T.A., Morton, D.M., 2015. High silica granites:Terminal porosity and crystal settling in shallow magma chambers. Earth Planet. Sci. Lett. 409, 23-31
    [60]
    Li, Y.X., Xie, Y.L., Chen, W., Tang, Y.W., Li, G.M., Zhang, L., Liu, X.M., 2011. U-Pb age and geochemical characteristics of zircon in monzogranite porphyry from Qiagong deposit, Tibet, and geological implication. Acta Petrol. Sin. 27(7), 2023-2033 (in Chinese with English abstract)
    [61]
    Li, X., Wang, C., Mao, W., Xu, Q., Liu, Y., 2014. The fault-controlled skarn W-Mo polymetallic mineralization during the main India-Eurasia collision:Example from Hahaigang deposit of Gangdese metallogenic belt of Tibet. Ore Geol. Rev. 58, 27-40
    [62]
    Linnen, R.L., Keppler, H., 1997. Columbite solubility in granitic melts:consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust. Contrib. Mineral. Petr. 128(2), 213-227
    [63]
    Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., Chen, H., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257 (1-2), 34-43
    [64]
    Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., Wang, D.B., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 51, 537-571
    [65]
    Lundstrom, C.C., Glazner, A.F., 2016. Silicic magmatism and the volcanic-plutonic connection. Elements 12(2), 91-96
    [66]
    Liu, H., Li, G. M., Huang, H. X., Cao, H.W., Yuan, Q., Li, Y.X., Ouyang, Y., Lan, S.S., Lv, M.H., Yan, G.Q., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China:Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geol Sin-Engl 92 (4), 1396-1414
    [67]
    Lu, T.Y., He, Z.Y., Klemd, R., 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology 50(2), 216-221. https://doi.org/10.1130/G49434.1
    [68]
    Mao, Z.H., Liu, J.J., Mao, J.W., Deng, J., Zhang, F., Meng, X.Y., Luo, X.H., 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China:Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 28(2), 816-836
    [69]
    Mao, J., Xiong, B., Liu, J., Pirajno, F., Cheng, Y., Ye, H., Song, S., Dai, P., 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China:Implications for petrogenesis, mineralization and geodynamic setting. Lithos 286-287, 35-52
    [70]
    Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635-643
    [71]
    Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. In:Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds.), One Hundredth Anniversary Volume. GeoScienceWorld, McLean. https://doi.org/10.5382/AV100.11.
    [72]
    Miller, C.F., Mittlefehldt, D.W., 1984. Extreme fractionation in felsic magma chambers:a product of liquid-state diffusion or fractional crystallization? Earth Planet. Sci. Lett. 68(1), 151-158
    [73]
    Miller, C., Schuster, R., Klötzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol. 40, 699-715
    [74]
    Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37, 215-224
    [75]
    Mo, X.X., Niu, Y.L., Dong, G.C., Dong, G.C., Zhao, Z.D., Hou, Z.Q., Ke, S., 2008. Contribution of syncollisional felsic magmatism to continental crust growth:a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49-67
    [76]
    Pan, G., Wang, L., Li, R., Yuan, S., Ji, W., Yin, F., Zhang, W., Wang, B., 2012. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 53, 3-14
    [77]
    Pichavant, M., Montel, J.M., Richard, L.R., 1992. Apatite solubility in peraluminous liquids:Experimental data and an extension of the Harrison- Watson model. Geochim. Cosmochim. Acta. 56, 3855-3861
    [78]
    Putirka, K.D., Canchola, J., Rash, J., Smith, O., Torrez, G., Paterson, S.R., Ducea, M.N., 2014. Pluton assembly and the genesis of granitic magmas:Insights from the GIC pluton in cross section, Sierra Nevada Batholith, California. Am. Mineral. 99(7), 1284-1303
    [79]
    Rapp, R.P., 1997. Heterogeneous source regions for Archaean granitoids:experimental and geochemical evidence. Oxford Monographs on Geology and Geophysics 35(1), 267-279
    [80]
    Raimbault, L., Cuney, M., Azencott, C., Duthou, J.L., Joron, J.L., 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ. Geol. 90(3), 548-576
    [81]
    Roberts, M.P., Clemens, J.D., 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21, 825-828
    [82]
    Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., 2000. Rutile-bearing refractory eclogites:missing link between continents and depleted mantle. Science 287, 278-281
    [83]
    Shuai, X., Li, S.M., Zhu, D.C., Wang, Q., Zhang, L.L., Zhao, Z., 2021. Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites:An example from central Tibet. Lithos 384, 105968
    [84]
    Solomon, M., 1981. An introduction to the geology and metallic ore deposits of Tasmania. Econ. Geol. 76 (2), 194-208
    [85]
    Stepanov, A.S., Hermann, J., 2013. Fractionation of Nb and Ta by biotite and phengite:Implications for the "missing Nb paradox". Geology 41, 303-306
    [86]
    Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta. 103, 263-275
    [87]
    Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geol. Soc. Lond., Spec. Publ. 42, 313-345
    [88]
    Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45(1-4), 29-44
    [89]
    Tera, F., Wasserburg, G.J., 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 14 (3), 281-304
    [90]
    Tian, K., Zheng, Y.Y., Gao, S.B., 2018. Petrogenesis and Geological Implications of Late Cretaceous Intrusion from Bangbule Pb-Zn-Cu Deposit, Western Gangdese, Tibet. Earth Sci. 44(6), 1905-1922
    [91]
    Wang, B.D., Guo, L., Wang, L.Q., Li, B., Huang, H.X., Chen, F.Q., Duan, Z.M., Zeng, Q.G., 2012. Geochronology and petrogenesis of the ore-bearing pluton in Chagele depositnin middle of the Gangdese metallogenic belt. Acta Petrol. Sin. 28 (05), 1647-1662 (in Chinese with English abstract)
    [92]
    Wang, L.Q., Cheng, W.B., Tang, J.X., Kang, H.R., Zhang, Y., Li, Z., 2016. U-Pb geochronology, geochemistry, and H-O-S-Pb isotopic compositions of the Leqingla and Xin'gaguo skarn Pb-Zn polymetallic deposits, Tibet, China. J. Asian Earth Sci. 115, 80-96
    [93]
    Wang, L., Wang, Y., Fan, Y., Danzhen, W., 2018. A Miocene tungsten mineralization and its implications in the western Bangong-Nujiang metallogenic belt:Constraints from U-Pb, Ar-Ar, and Re-Os geochronology of the Jiaoxi tungsten deposit, Tibet, China. Ore Geol. Rev. 97, 74-87
    [94]
    Wang, Y., Tang, J.X., Wang, L.Q., Li, S., Danzhen, W.X., Li, Z., Zheng, S.L., Ga,o T., 2019. Magmatism and metallogenic mechanism of the Ga'erqiong and Galale Cu-Au deposits in the west central Lhasa subterrane, Tibet:Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Ore Geol. Rev. 105, 616-635
    [95]
    Wang, Y., Tang, J., Wang, L., Huizenga, J.M., Santosh, M., Zheng, S., Hu, Y., Gao, T., 2020. Geology, geochronology and geochemistry of the Miocene Jiaoxi quartz veintype W deposit in the western part of the Lhasa Terrane, Tibet:Implications for ore genesis. Ore Geol. Rev. 103433
    [96]
    Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites:geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petr. 95(4), 407-419
    [97]
    Wiedenbeck, M.A.P.C., Alle, P., Corfu, F.Y., Griffin, W.L., Meier, M., Oberli, F.V., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslett. 19 (1), 1-23
    [98]
    Wolf, M.B., London, D., 1994. Apatite dissolution into peraluminous haplogranitic melts:an experimental study of solubilities and mechanisms. Geochim. Cosmochim. Acta. 58, 4127-4145
    [99]
    Wu, F., Liu, X., Ji, W., Wang, J., Yang, L., 2017. Highly fractionated granites:Recognition and research. Sci. China:Earth Sci. 60, 1201-1219
    [100]
    Wu, Y., Zheng, Y., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin. Sci. Bull. 49(15), 1554-1569
    [101]
    Von Quadt, A., Erni, M., Martinek, K., Moll, M., Peytcheva, I., Heinrich, C.A., 2011. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39(8), 731-734
    [102]
    Van Lichtervelde, M., Melcher, F., Wirth, R., 2009. Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. Am. Mineral. 94(4), 439-450.
    [103]
    Xu, J., Zheng, Y., Sun, X., Li, X., Mao, G., 2019. Genesis of the Yaguila Pb-Zn-Ag-Mo skarn deposit in Tibet:Insights from geochronology, geochemistry, and fluid inclusions. J. Asian Earth Sci. 172, 83-100
    [104]
    Xu, P.-Y., Zheng, Y.-C., Yang, Z.-S., Hou, Z.-Q., Shen, Y., Wang, Z.-X., Wu, C.-D., Zhou, L.-M., 2020. Metallogeny of the continental collision-related Jiagang W-Mo deposit, Tibet:Evidence from geochronology and petrogenesis. Ore Geol. Rev. 122, 103519
    [105]
    Yin, A.N., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28 (1), 211-280
    [106]
    Zheng, Y.C., Fu, Q., Hou, Z.Q., Yang, Z.S., Huang, K.X., Wu, C.D., Sun, Q.Z., 2015. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geol. Rev. 70, 510-532
    [107]
    Zhang, S., Zheng, Y.C., Huang, K., Li, W., Sun, Q., Li, Q., Fu, Q., Liang, W., 2012. Re-Os dating of molybdenite from Nuri Cu-W-Mo deposit and its geological significance. Mineral. Deposita 31, 337-346 (in Chinese with English abstract)
    [108]
    Zhao, J.X., Li, G.M., Evans, N.J., Qin, K.Z., Li, J.X., Zhang, X.N., 2016. Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane, Tibet. J. Asian Earth Sci. 129, 38-53
    [109]
    Zhu, D.C., Zhao, Z.D., Niu, Y., Mo, X.X., Chung, S.-L., Hou, Z.Q., Wang, L.Q., Wu, F.Y., 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 301, 241-255
    [110]
    Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., Mo, X.X., 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 23(4), 1429-1454
    [111]
    Zhou, J., Yang, Z., Hou, Z., Liu, Y., Zhao, X., Zhang, X., Ma, W., 2017. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet). Lithos 288, 143-155
    [112]
    Zoheir, B., Lehmann, B., Emam, A., Radwan, A., Zhang, R., Bain, W.M., Nolte, N., 2020. Extreme fractionation and magmatic-hydrothermal transition in the formation of the Abu Dabbab rare-metal granite, Eastern Desert, Egypt. Lithos 352, 105329
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return