Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wei Dang, Haikuan Nie, Jinchuan Zhang, Xuan Tang, Shu Jiang, Xiaoliang Wei, Yang Liu, Fengqin Wang, Pei Li, Zhipeng Chen. Pore-scale mechanisms and characterization of light oil storage in shale nanopores: New method and insights[J]. Geoscience Frontiers, 2022, 13(5): 101424. doi: 10.1016/j.gsf.2022.101424
Citation: Wei Dang, Haikuan Nie, Jinchuan Zhang, Xuan Tang, Shu Jiang, Xiaoliang Wei, Yang Liu, Fengqin Wang, Pei Li, Zhipeng Chen. Pore-scale mechanisms and characterization of light oil storage in shale nanopores: New method and insights[J]. Geoscience Frontiers, 2022, 13(5): 101424. doi: 10.1016/j.gsf.2022.101424

Pore-scale mechanisms and characterization of light oil storage in shale nanopores: New method and insights

doi: 10.1016/j.gsf.2022.101424

This study was supported by the National Natural Science Foundation of China (Grant Nos. 41872124, 1972132, 42072174, 41730421, and 41972132) and the Open Foundation of provincial and ministerial Key Laboratory of China University of Geosciences (Beijing) (Grant No. 20210104).

  • Received Date: 2021-10-26
  • Accepted Date: 2022-06-14
  • Rev Recd Date: 2022-06-05
  • Publish Date: 2022-06-17
  • A new method is proposed to analyze the pore-scale mechanisms and characterization of light oil storage in shale nanopores, which is based on the Hydrocarbon Vapor Adsorption (HVA) and Pore Calculation Model (PCM). First, the basic principle of the HVA-PCM method is introduced, and the experimental/mathematical analysis processes are given. Then, the HVA-PCM method is applied to shale samples to analyze the mechanisms and characterization of light oil storage in shale nanopores. The results provide insights into the pore-scale oil storage mechanisms, oil storage structure, oil film thickness, oil distribution within different sized pores, and the oil storage state. Finally, the advantages and limitations of the HVA-PCM method are discussed, and suggestions for further improvement are proposed. Overall, the HVA-PCM method is a powerful tool for extracting quantitative information on the light oil storage in shale nanopores.
  • loading
  • [1]
    Barrett, E.P., Joyner, L.G., Halenda, P.P., 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373-380
    Cao, Z., Jiang, H., Zeng, J., Saibi, H., Lu, T., Xie, X., Zhang, Y., Zhou, G., Wu, K., Guo, J., 2021. Nanoscale liquid hydrocarbon adsorption on clay minerals:A molecular dynamics simulation of shale oils. Chem. Eng. J. 420, 127578
    Chen, L., Jiang, Z., Liu, Q., Jiang, S., Liu, K., Tan, J., Gao, F., 2019a. Mechanism of shale gas occurrence:Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 104, 200-216
    Chen, L., Zuo, L., Jiang, Z., Jiang, S., Liu, K., Tan, J., Zhang, L., 2019b. Mechanisms of shale gas adsorption:Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chem. Eng. J. 361, 559-570
    Dang, W., Jiang, S., Zhang, J., Li, P., Nie, H., Liu, Y., Li, F., Sun, J., Tao, J., Tang, X., 2021. A systematic experimental and modeling study of water adsorption/desorption behavior in organic-rich shale with different particle sizes. Chem. Eng. J. 426, 130596
    Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Chen, Q., Wei, X., Wang, R., 2020. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition:Implications for understanding the nature of shale gas adsorption process. Chem. Eng. J. 383, 123191
    Dang W., Zhang J., Nie H., Wang F., Tang X., Jiang S., Wei X., Liu Q., Li P., Li F., Sun J., 2022. Microscopic occurrence characteristics of shale oil and their main controlling factors:a case study of the 3rd submember continental shale of Member 7 of Yanchang Formation in Yan'an area, Ordos Basin. Acta Petrolei Sin. 43, 507-523 (in Chinese with English abstract)
    Dent, R., 1977. A multilayer theory for gas sorption:Part I:Sorption of a single gas. Text. Res. J. 47, 145-152
    Gong, Y., Liu, K., Zhao, M.J., 2017. Determination of the thicknesses of oil films in micro-and nano-pores in tight oil sands:an example from the southern Songliao Basin, NE China. Arabian J. Geosci. 10, 228
    Hagymassy Jr, J., Brunauer, S., 1970. Pore structure analysis by water vapor adsorption. II. Analysis of five silica gels. J. Colloid Interface Sci. 33, 317-327
    Hagymassy Jr, J., Brunauer, S., Mikhail, R.S., 1969. Pore structure analysis by water vapor adsorption:I. t-curves for water vapor. J. Colloid Interface Sci. 29, 485-491
    Hagymassy Jr, J., Odler, I., Yudenfreund, M., Skalny, J., Brunauer, S., 1972. Pore structure analysis by water vapor adsorption. III. Analysis of hydrated calcium silicates and portland cements. J. Colloid Interface Sci. 38, 20-34
    Horváth, G., Kawazoe, K., 1983. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16, 470-475
    Hu, H., Zhang, T., Wiggins-Camacho, J.D., Ellis, G.S., Lewan, M.D., Zhang, X., 2015. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis. Mar. Pet. Geol. 59, 114-128
    Jiang, F.J., Pang, X.Q., Jiang, Z.X., Liu, L.F., Gao, X.Y., Guo, J.G., Bai, J., 2013. Residual oil and gas in source rocks and its influence on oil and gas rate in shale. J. Cent. South Univ. 44, 2439-2448 (in Chinese with English abstract)
    Jin, Z.J., Wang, G.P., Liu, G.X., Gao, B., Liu, Q.Y., Wang, H.L., Liang, X.P., Wang, R.Y., 2021. Research progress and key scientific issues of continental shale oil in China. Acta Petrolei Sin. 42, 821-835 (in Chinese with English abstract)
    Keating, K., Knight, R., 2010. A laboratory study of the effect of Fe (II)-bearing minerals on nuclear magnetic resonance (NMR) relaxation measurements. Geop. 75, F71-F82
    Kowalczyk, P., Terzyk, A.P., Gauden, P.A., Solarz, L., 2002. Numerical analysis of Horvath-Kawazoe equation. Comput. Chem. 26, 125-130
    Li, J., Lu, S., Cai, J., Zhang, P., Xue, H., Zhao, X., 2018. Adsorbed and free oil in lacustrine nanoporous shale:a theoretical model and a case study. Energy Fuels 32, 12247-12258
    Li, J., Lu, S., Xie, L., Zhang, J., Xue, H., Zhang, P., Tian, S., 2017. Modeling of hydrocarbon adsorption on continental oil shale:A case study on n-alkane. Fuel 206, 603-613
    Li, M., Chen, Z., Ma, X., Cao, T., Qian, M., Jiang, Q., Tao, G., Li, Z., Song, G., 2019. Shale oil resource potential and oil mobility characteristics of the eocene-oligocene shahejie formation, jiyang super-depression, bohai bay basin of China. Int. J. Coal Geol. 204, 130-143
    Liu, B., Jiang, X., Bai, L., Lu, R., 2021. Investigation of oil and water migrations in lacustrine oil shales using 20 MHz 2D NMR relaxometry techniques. Pet. Sci. In Press. https://doi.org/10.1016/j.petsci.2021.10.011
    Liu, J., Yang, Y., Sun, S., Yao, J., Kou, J., 2022. Flow Behaviors of Shale Oil in Kerogen Slit by Molecular Dynamics Simulation. Chem. Eng. J. 434, 134682
    Liu, D., Liu, H., Wu, Y., Zhang, W., Wang, Y., Santosh, M., 2022. Characterization of geo-material parameters:Gene concept and big data approach in geotechnical engineering. Geosyst. Geoenviron. 1, 100003
    Lu, S.F., Xue, H.T., Wang, M., Xiao, D.S., Huang, W.B., Li, J.Q., Xie, L.J., Tian, S.S., Wang, S.S., Li, J.J., Wang, W.M., Chen, F.W., Li, W.H., Xue, Q.Z., Liu, X.F., 2016. Several key issues and research trends in evaluation of shale oil. Acta Petrolei Sin. 37, 1309-1322 (in Chinese with English abstract)
    Michael, G.E., Packwood, J., Holba, A., 2013. Determination of in-situ hydrocarbon volumes in liquid rich shale plays, in:SPE/AAPG/SEG Unconventional Resources Technology Conference, pp. 2037-2043
    Odler, I., Hagymassy Jr, J., Yudenfreund, M., Hanna, K.M., Brunauer, S., 1972. Pore structure analysis by water vapor adsorption. IV. Analysis of hydrated Portland cement pastes of low porosity. J. Colloid Interface Sci. 38, 265-276
    Peng, P.A., Jia, C.Z., 2021. Evolution of deep source rock and resource potential of primary light oil and condensate. Acta Petrolei Sin. 42, 1543-1555 (in Chinese with English abstract)
    Phoon, K. K., Ching, J., Shuku, T., 2022. Challenges in data-driven site characterization. Georisk:Assess. Manage. Risk Eng. Syst. Geohazards. 16, 114-126
    Salygin, V., Guliev, I., Chernysheva, N., Sokolova, E., Toropova, N., Egorova, L., 2019. Global shale revolution:Successes, challenges, and prospects. Sustainability. 11, 1627
    Sing, K., 2001. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. Physicochem. Eng. Aspects. 187, 3-9
    Sun, J.L., 2014. Development of Inorganic-Organic Hybrid Materials for Waste Water Treatment. Ph.D thesis, National University of Singapore, 223 p
    Sun, C., Nie, H., Dang, W., Chen, Q., Zhang, G., Li, W., Lu, Z., 2021. Shale Gas Exploration and Development in China:Current Status, Geological Challenges, and Future Directions. Energy Fuels. 35, 6359-6379
    Tang, X., Zhang, T., Zhang, J., Sun, X., Wu, C., Jin, Z., 2020. Effects of pore fluids on methane sorption in the Lower Bakken Shales, Williston Basin, USA. Fuel. 282, 118457
    Wang, M., Ma, R., Li, J., Lu, S., Li, C., Guo, Z., Li, Z., 2019. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 46, 833-846
    Wang, S., Feng, Q., Javadpour, F., Xia, T., Li, Z., 2015. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 147, 9-24
    Xu, Y., Lun, Z., Pan, Z., Wang, H., Zhou, X., Zhao, C., Zhang, D., 2022. Occurrence space and state of shale oil:A review. J. Pet. Sci. Technol. 211, 110183
    Yang, C., Zhang, J., Tang, X., Ding, J., Zhao, Q., Dang, W., Chen, H., Su, Y., Li, B., Lu, D., 2017. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int. J. Coal Geol. 171, 76-92
    Yang, Y., Liu, J., Yao, J., Kou, J., Li, Z., Wu, T., Zhang, K., Zhang, L., Sun, H., 2020. Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem. Eng. J. 387, 124054
    Zhang, P., Lu, S., Li, J., Chang, X., 2020a. 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks. Mar. Pet. Geol. 114, 104210
    Zhang, W., Feng, Q., Wang, S., Xing, X., 2019. Oil diffusion in shale nanopores:Insight of molecular dynamics simulation. J. Mol. Liq. 290, 111183
    Zhang, W.B., Huang, B., Yu, X.L., Zhang, J.H., 2020b. Interpretation of BJH method for calculating aperture distribution process. Univ. Chem. 35, 98-106 (in Chinese with English abstract)
    Zhao, X., Sang, Q., Li, Y., Shi, L., Liu, H., Dong, M., 2021. Mobilization of oil in organic matter and its contribution to oil production during primary production in shale. Fuel 287, 119449
    Zhu, C., Guo, W., Li, Y., Gong, H., Sheng, J., Dong, M., 2021. Effect of occurrence states of fluid and pore structures on shale oil movability. Fuel 288, 119847
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(11) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint