Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Qixing Zhou, Simin Wang, Jiaqi Liu, Xiangang Hu, Yuxia Liu, Yuqing He, Xuan He, Xiaotong Wu. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems[J]. Geoscience Frontiers, 2022, 13(5): 101427. doi: 10.1016/j.gsf.2022.101427
Citation: Qixing Zhou, Simin Wang, Jiaqi Liu, Xiangang Hu, Yuxia Liu, Yuqing He, Xuan He, Xiaotong Wu. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems[J]. Geoscience Frontiers, 2022, 13(5): 101427. doi: 10.1016/j.gsf.2022.101427

Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems

doi: 10.1016/j.gsf.2022.101427
Funds:

D project (Grant No. 2019YFC1804104), and the Ministry of Education, People's Republic of China as a 111 program (Grant No. T2017002).

This work was financially supported by the National Natural Science Foundation of China as a Shandong joint key project (Grant No. U1906222), the Ministry of Environmental Science and Technology, People's Republic of China as a key R&

  • Received Date: 2022-04-12
  • Accepted Date: 2022-06-28
  • Rev Recd Date: 2022-06-11
  • Publish Date: 2022-07-02
  • Populations and metropolitan centers are accumulated in coastal areas around the world. In view of the fact that they are geographically adjacent to coasts and intense anthropogenic activities, increasing global offshore pollution has been an important worldwide concern over the past several decades and has become a very serious problem that needs to be addressed urgently. Due to offshore pollution, various geological disasters occur in high frequency, including intensified erosion and salinization of coastal soils, frequent geological collapses and landslides and increasing seismic activities. Moreover, offshore pollution shows increasingly serious impacts on the topography and geomorphology of offshore and coastal areas, including coastal degradation, retreating coastlines and estuary delta erosion. Offshore sedimentation processes are strongly influenced by the pH changes of terrestrial discharges, and sedimentary dynamics have become extremely acute and complex due to offshore pollution. The seabed topography and hydrodynamic environment determine the fate and transport of pollutants entering offshore regions. Coastal estuaries, port basins and lagoons that have relatively moderate ocean currents and winds are more likely to accumulate pollutants. Offshore regions and undersea canyons can be used as conduits for transporting pollutants from the continent to the seabed. It is particularly noteworthy that the spatial/temporal distribution of species, community structures, and ecological functions in offshore areas have undergone unprecedented changes in recent decades. Due to increasing offshore pollution, the stable succession and development trend of marine ecosystems has been broken. It is thus important to identify and regulate the quantity, composition and transportation of pollutants in offshore regions and their behavior in marine ecosystems. In particular, crucial actions for stabilizing marine ecosystems, including increasing species and biodiversity, should be implemented to enhance their anti-interference capabilities. This review provides an overview of the current situation of offshore pollution, as well as major trends of pollutant fate and transportation from continent to marine ecosystems, transformation of pollutants in sediments, and their bioaccumulation and diffusion. This study retrospectively reviews the long-term geological evolution of offshore pollution from the perspective of marine geology, and analyses their long-term potential impacts on marine ecosystems. Due to ecological risks associated with pollutants released from offshore sediments, more research on the influence of global offshore pollution based on marine geology is undoubtedly needed.
  • loading
  • [1]
    Abidin, H.Z., Andreas, H., Gumilar, I., Sidiq, T.P., Fukuda, Y., 2013. Land subsidence in coastal city of Semarang (Indonesia):characteristics, impacts and causes. Geomat. Nat. Haz. Risk 4, 226-240
    [2]
    Alava, J.J., Cheung, W.W.L., Ross, P.S., Sumaila, U.R., 2017. Climate change-contaminant interactions in marine food webs:Toward a conceptual framework. Global Change Biol. 23, 3984-4001
    [3]
    Alberti, M., Marzluff, J.M., Shulenberger, E., Bradley, G., Ryan, C., Zumbrunnen, C., 2003. Integrating humans into ecology:Opportunities and challenges for studying urban ecosystems. BioScience 53, 1169-1179
    [4]
    Almeda, R., Cosgrove, S., Buskey, E.J., 2018. Oil spills and dispersants can cause the initiation of potentially harmful dinoflagellate blooms ("red tides"). Environ. Sci. Technol. 52, 5718-5724
    [5]
    Amos, H.M., Jacob, D.J., Kocman, D., Horowitz, H.M., Zhang, Y., Dutkiewicz, S., Horvat, M., Corbitt, M.S., Krabbenhof, D.P., Sunderland, E.M., 2014. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 48, 9514-9522
    [6]
    Arndt, S., Jorgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments:A review and synthesis. Earth Sci. Rev. 123, 53-86
    [7]
    Azaroff, A., Miossec, C., Lanceleur, L., Guyoneaud, R., Monperrus, M., 2020. Priority and emerging micropollutants distribution from coastal to continental slope sediments:A case study of Capbreton Submarine Canyon (North Atlantic Ocean). Sci. Total Environ. 703, 135057
    [8]
    Baldermann, A., Warr, L.N., Letofsky-Papst, I., Mavromatis, V., 2015. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 8(11), 885
    [9]
    Berner, R.A., 1964. An idealized model of dissolved sulfate distribution in recent sediments. Geochem. Cosmochim. Ac. 28, 1497-1503
    [10]
    Blain, S., 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446, 1070-U1
    [11]
    Blum, J.D., Popp, B.N., Drazen, J.C., Anela Choy, C., Johnson, M.W., 2013. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6(10), 879-884
    [12]
    Board, T.R., Council, N.R., 2003. Oil in the Sea III:Inputs, Fates, and Effects. The National Academies Press, Washington, DC, 277 pp
    [13]
    Boudreau, B.P., 1997. Diagenetic Models and Their Implementation:Modelling Transport and Reactions in Aquatic Sediments. Springer, Berlin, Germany
    [14]
    Boudreau, B.P., Ruddick, B.P., 1991. On a reactive continuum representation of organic matter diagenesis. Am. J. Sci. 291, 507-538
    [15]
    Bowen, G.J., Zachos, J.C., 2010. Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum. Nat. Geosci. 3(12), 866-869
    [16]
    Brakstad, O.G., Lewis, A., Beegle-Krause, C.J., 2018. A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Mar. Pollut. Bull. 135, 346-356
    [17]
    Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M., Yasuhara, M., Zhang, J., 2018. Declining oxygen in the global ocean and coastal waters. Science, 359(6371), eaam7240
    [18]
    Brierley, A.S., Kingsford, M.J., 2009. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19(14), R602-14
    [19]
    Brussaard, C.P.D., Peperzak, L., Beggah, S., Wick, L.Y., Wuerz, B., Weber, J., Arey, J.S., van der Burg, B., Jonas, A., Huisman, J., van der Meer, J.R., 2016. Immediate ecotoxicological effects of short-lived oil spills on marine biota.Nat. Commun.7,11206
    [20]
    Burdige, D.J., 2007. Preservation of organic matter in marine sediments:controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467-485
    [21]
    Carmona, P., Ruiz, J.M., Pérez-Cueva, A., Acosta, M.L., 2020. Accelerated transgressive processes in a Mediterranean coastal barrier:Subsidence, anthropic action and geomorphological changes since the Little Ice Age. Quatern. Int. 554, 150-163
    [22]
    Chan, F., Barth, J.A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W.T., Menge, B.A., 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319(5865), 920
    [23]
    Chavez, F.P., Messie, M., Pennington, J.T., 2011. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227-260
    [24]
    Chen, J., Li, D., Chen B., Hu, F., Zhu, H., Liu, C., 1999. The processes of dynamic sedimentation in the Changjiang Estuary. J. Sea Res. 41(1-2), 129-140
    [25]
    Cheng, H., Huang, Y., Xu, Q., 2014. Numerical modeling of the submarine debris flows run-out using SPH. Engineering Geology for Society and Territory 4, Springer, Switzerland, pp.157-160
    [26]
    Chet, I., Mitchell, R., 1976. Petroleum hydrocarbons inhibit decomposition of organic matter in seawater. Nature 261(5558), 308-309
    [27]
    Chow, T.J., Patterson, C.C., Settle, D., 1974. Occurrence of lead in tuna. Nature, 251(5471), 159-161
    [28]
    Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K., Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62, 2199-2204
    [29]
    Coni, E.O.C., Nagelkerken, I., Ferreira, C.M., Connell, S.D., Booth, D.J., 2021.Ocean acidification may slow the pace of tropicalization of temperate fish communities.Nat. Clim. Chang. 11, 249-256
    [30]
    Critchell, K., Lambrechts, J., 2016. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar. Coast. Shelf Sci. 171, 111-122
    [31]
    Dai, Z., Du, J., Zhang, X., Su, N., Li, J., 2011. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955-2008). Environ. Sci. Technol. 45, 223-227
    [32]
    Damak, M., Frontalini, F., Elleuch, B., Kallel, M., 2019. Benthic foraminiferal assemblages as pollution proxies along the coastal fringe of the Monastir Bay (Tunisia). J. Afr. Earth Sci. 150, 379-388
    [33]
    de Madron, X. Durrieu, Guieu, C., Sempere, R., Conan, P., Cossa, D., D'Ortenzio, F., 2011. Marine ecosystems' responses to climatic and anthropogenic forcings in the Mediterranean. Prog. Oceanogr. 91, 593-594.
    [34]
    de Mutsert, K., Steenbeek, J., Lewis, K., Buszowski, J., Cowan, J.H., Christensen, V., 2016. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Model. 331, 142-150
    [35]
    Deegan, L.A., Johnson, D.S., Warren, R.S., Peterson, B.J., Fleeger, J.W., Fagherazzi, S., Wollheim, W.M.,2012. Coastal eutrophication as a driver of salt marsh loss.Nature490,388-392
    [36]
    Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891), 926
    [37]
    Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., 2013. Mercury as a global pollutant:sources, pathways, and effects. Environ. Sci. Technol. 47, 4967-4983
    [38]
    Du, J.-L., Yang, S.-L., Feng, H., 2016. Recent human impacts on the morphological evolution of the Yangtze River delta foreland:A review and new perspectives. Estuar. Coast. Shelf S. 181, 160-169
    [39]
    Duarte, C.M., 2002. The future of seagrass meadows. Environ. Conserv. 29, 192-206
    [40]
    Dutkiewicz, S., Morris, J.J., Follows, M.J., Scott, J., Levitan, O., Dyhrman, S.T., Berman-Frank, I., 2015. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002-1006
    [41]
    El-Sorogy, A.S., Youssef, M., Al-Kahtany, K., Saleh, M.M., 2020. Distribution, source, contamination, and ecological risk status of heavy metals in the Red Sea-Gulf of Aqaba coastal sediments, Saudi Arabia. Mar. Pollut. Bull. 158, 111411
    [42]
    Elbaz-Poulichet, F., Holliger, P., Huang, W.W., Martin, J.-M., 1984. Lead cycling in estuaries, illustrated by the Gironde estuary, France. Nature 308(5958), 409-414
    [43]
    Elhakeem, A.A., Elshorbagy, W., Chebbi, R., 2007. Oil spill simulation and validation in the Arabian (Persian) Gulf with special reference to the UAE coast. Water Air Soil Poll. 184(1-4), 243-254
    [44]
    Elnashai, A.S., Di Sarno, L., 2015.FundamentalsofEarthquakeEngineering:From Source to Fragility. John Wiley and Sons, New York, USA
    [45]
    Enders, K., Lenz, R., Stedmon, C.A., Nielsen, T.G., 2015. Abundance, size and polymer composition of marine microplastics 10 mm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70-81
    [46]
    Essink G.H.P.O., 2001. Improving fresh groundwater supply-problems and solutions. Ocean Coast. Manag. 44(5-6),429-449
    [47]
    Fabian, J., Zlatanovic, S., Mutz, M., Premke, K., 2017.Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality.ISME J.11,415-425
    [48]
    Fischer, D., Mogollon, J. M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spiess, V., Kasten, S., 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nat. Geosci. 6(8), 647-651
    [49]
    FitzGerald, D.M., J. Hein, C., Hughes, Z., Kulp, M., Georgiou, I., Miner, M., 2018. Runaway barrier island transgression concept:Global case studies. In:Moore, L., Murray, A.B. (Eds.), Barrier Dynamics and Response to Changing Climate. Springer, Cham, pp. 3-56.
    [50]
    Fitzgerald, W.F., Lamborg, C.H., Hammerschmidt, C.R., 2007. Marine biogeochemical cycling of mercury. Chem. Rev. 107(2), 641-662
    [51]
    Galbraith, E.D., Kienast, M., Pedersen, T.F., Calvert, S.E., 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19, 12
    [52]
    Galloway, T., Cole, M., Lewis, C., 2017. Interactions of microplastic debris throughout the marine ecosystem.Nat. Ecol. Evol.1,0116
    [53]
    Gao, X., Chen, C.T.A., 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46, 1901-1911
    [54]
    Gao, L., Li, D., Zhang, Y., 2012. Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River):Seasonal variations and temporal trends. J. Geophys. Res.-Biogeo. 117, G04001. https://doi.org/10.1029/2012JG001952
    [55]
    Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Pörtner, H.-O., Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U.R., Treyer, S., Turley, C., 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243), aac4722
    [56]
    Ge, T., Xue, Y., Jiang, X., Zou, L., Wang, X., 2020. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452
    [57]
    Gillespie, D.C., 1972. Mobilization of mercury from sediments into Guppies (Poecilia reticulata). J. Fish. Res. Board Canada 29(7), 1035-1041
    [58]
    González-Gaya, B., Fernández-Pinos, M.-C., Morales, L., Méjanelle, L., Abad, E., Piña, B., Duarte, C.M., Jiménez, B., Dachs, J., 2016. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons. Nat. Geosci. 9(6), 438-442
    [59]
    Goñi, M., Ruttenberg, K., Eglinton, T., 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico.Nature389,275-278
    [60]
    Goto, K., Ishizawa, T., Ebina, Y., Imamura, F., Sato, S., Udo, K., 2021. Ten years after the 2011 Tohoku-oki earthquake and tsunami:Geological and environmental effects and implications for disaster policy changes. Earth Sci. Rev. 212, 103417
    [61]
    Grasby, S.E., Sanei, H., Beauchamp, B., 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4(2), 104-107
    [62]
    Gu, X., Evans, L.J., Barabash, S.J., 2010. Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochim. Cosmochim. Ac. 74, 5718-5728
    [63]
    Gutierrez, D., Sifeddine, A., Field, D.B., Ortlieb, L., Vargas, G., Chavez, F.P., Velazco, F., Ferreira, V., Tapia, P., Salvatteci, R., Boucher, H., Morales, M.C., Valdes, J., Reyss, J.L., Campusano, A., Boussafir, M., Mandeng-Yogo, M., Garcia, M., Baumgartner, T., 2009. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age. Biogeosciences 6, 835-848
    [64]
    Hader, D.P., Banaszak, A.T., Villafane, V.E., Narvarte, M.A., Gonzalez, R.A., Helbling, E.W., 2020. Anthropogenic pollution of aquatic ecosystems:Emerging problems with global implications. Sci. Total Environ. 713, 136586
    [65]
    Hao, W., Kashiwabara, T., Jin, R., Takahashi, Y., Gingras, M., Alessi, D.S., Konhauser, K.O., 2020. Clay minerals as a source of cadmium to estuaries. Sci. Rep. 10(1), 10417
    [66]
    Hao, Z., Chen, L., Wang, C., Zou, X., Zheng, F., Feng, W., Zhang, D., Peng, L., 2019. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere 226, 340-350
    [67]
    Hatcher, P.G., Ravin, A., Behar, F., Baudin, F., 2014. Diagenesis of organic matter in a 400 m organic rich sediment core from offshore Namibia using solid state 13C NMR and FTIR. Org. Geochem. 75, 8-23
    [68]
    Head, I.M., Jones, D.M., Roling, W.F.M., 2006. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4, 173-182
    [69]
    Helmig, D., Rossabi, S., Hueber, J., Tans, P., Montzka, S.A., Masarie, K., Thoning, K., Plass-Duelmer, C., Claude, A., Carpenter, L.J., Lewis, A.C., Punjabi, S., Reimann, S., Vollmer, M.K., Steinbrecher, R., Hannigan, J.W., Emmons, L.K., Mahieu, E., Franco, B., Smale, D., Pozzer, A., 2016. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat. Geosci. 9(7), 490-495
    [70]
    Howarth, R.W., Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:Evolving views over three decades. Limnol. Oceanogr. 51, 364-376
    [71]
    Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., Antonelli, A., 2010. Amazonia through time:Andean uplift, climate change, landscape evolution, and biodiversity. Science 330(6006), 927-931
    [72]
    Huang, Y., Jin, P., 2017. Impact of human interventions on coastal and marine geological hazards:a review. B. Eng. Geol. Environ. 77(3), 1081-1090
    [73]
    Ito, T., Nenes, A., Johnson, M.S., Meskhidze, N., Deutsch, C., 2016. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nat. Geosci. 9(6), 443-447
    [74]
    Izaditame, F., Siebecker, M.G., Sparks, D.L., 2022. Sea-level-rise-induced flooding drives arsenic release from coastal sediments. J. Hazard. Mater. 423, 127161
    [75]
    Jackson, A.L., Johnson, H.D., 2009. Sustained turbidity currents and their interaction with debrite-related topography; Labuan Island, offshore NW Borneo, Malaysia. Sediment. Geol. 219(1-4), 77-96
    [76]
    Jensen, S., Jernelöv, A., 1969. Biological methylation of mercury in aquatic organisms. Nature 223(5207), 753-754
    [77]
    Jia, Y., Zhu, C., Liu, L., Wang, D., 2016. Marine geohazards:review and future perspective. Acta Geol. Sin.-Engl. 90, 1455-1470
    [78]
    Jiang, Z., Liu, J., Chen, J., Chen, Q., Yan, X., Xuan, J., Zeng, J., 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 54, 1-11
    [79]
    Kawahata, H.,Yukino, I.,Suzki, A.,2000.Terrestrial influence on the Shiraho fringing reef, Ishigaki Island, Japan:high carbon input relative to phosphate.Coral Reefs19,172-178
    [80]
    Ketzer, M., Praeg, D., Rodrigues, L.F., Augustin, A., Pivel, M.A.G., Rahmati-Abkenar, M., Miller, D.J., Viana, A.R., Cupertino, J.A., 2020. Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere.Nat. Commun.11,3788
    [81]
    Kong, L., Gao, Y., Zhou, Q., Zhao, X., Sun, Zi., 2018. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J. Hazard. Mater. 343, 276-284
    [82]
    Kooi, M., Reisser, J., Slat, B., Ferrari, F.F., Schmid, M.S., Cunsolo, S., Brambini, R., Noble, K., Sirks, L., Linders, T.E.W., Schoeneich-Argent, R.I., Koelmans, A.A., 2016. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 33882
    [83]
    Kroeker, K.J., Kordas, R.L., Crim, R.N., Singh, G.G., 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13(11), 1419-1434
    [84]
    Lacroix, P., Handwerger, A.L., Bièvre, G., 2020. Life and death of slow-moving landslides.Nat. Rev. Earth Environ.1,404-419
    [85]
    Laiz, I., Plecha, S., Teles-Machado, A., Gonzalez-Ortegon, E., Sanchez-Quiles, D., Cobelo-Garcia, A., Roque, D., Peliz, A., Sanchez-Leal, R.F., Tovar-Sanchez, A., 2020. The role of the Gulf of Cadiz circulation in the redistribution of trace metals between the Atlantic Ocean and the Mediterranean Sea. Sci. Total Environ. 719, 134964
    [86]
    Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., 2016. An examination of the role of particles in oceanic mercury cycling. Philos. Trans. A. Math. Phys. Eng. 374, 20150297
    [87]
    Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., Ciais, P., Conway, T.J., Doney, S.C., Feely, R.A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R.A., House, J.I., Huntingford, C., Levy, P.E., Lomas, M.R., Majkut, J., Metzl, N., Ometto, J.P., Peters, G.P., Prentice, I.C., Randerson, J.T., Running, S.W., Sarmiento, J.L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G.R., Woodward, F.I., 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2(12), 831-836
    [88]
    Leonowicz, P., Bienkowska-Wasiluk, M., Ochmanski, T., 2021. Benthic microbial mats from deep-marine flysch deposits (Oligocene Menilite Formation from S Poland):Palaeoenvironmental controls on the MISS types. Sediment. Geol. 417, 105881
    [89]
    Li, K., Zuo, L., Nardelli, V., Alves, T.M., Lourenço, S.D.N., 2019. Morphometric signature of sediment particles reveals the source and emplacement mechanisms of submarine landslides. Landslides 16(4), 829-837
    [90]
    Li, M., Xu, K., Watanabe, M., Chen, Z., 2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar. Coast. Shelf S. 71(1-2), 3-12
    [91]
    Lohbeck, K.T., Riebesell, U., Reusch, T.B.H., 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5(5), 346-351
    [92]
    Longhurst, A.R., Radford, P.J., 1975. PCB concentrations in North Atlantic surface water. Nature 256(5514), 239-239
    [93]
    Mackenzie, F., Lerman, A., 2006. Carbon in the Geobiosphere-Earth's Outer Shell. Springer, Heidelberg
    [94]
    Magill, C.R., Ausín, B., Wenk, P., McIntyre, C., Skinner, L., Martínez-García, A., Hodell, D.A., Haug, G. H., Kenney, W., Eglinton, T.I., 2018.Transient hydrodynamic effects influence organic carbon signatures in marine sediments.Nat. Commun.9,4690
    [95]
    Maloney, J.M., Bentley, S.J., Xu, K., Obelcz, J., Georgiou, I.Y., Miner, M.D., 2018. Mississippi River subaqueous delta is entering a stage of retrogradation. Mar. Geol. 400, 12-23
    [96]
    Mao, J., Tremblay, L., Gagné, J.P., 2011. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR:insights into sources, preservation and molecularly uncharacterized components. Geochim. Cosmochim. Acta. 75, 7864-7880
    [97]
    Marmin, S., Dauvin, J.-C., Lesueur, P., 2014. Collaborative approach for the management of harbour-dredged sediment in the Bay of Seine (France). Ocean. Coast. Manage. 102, 328-339
    [98]
    McGovern, M., Evenset, A., Borga, K., de Wit, H.A., Braaten, H.F.V., Hessen, D.O., Schultze, S., Ruus, A., Poste, A., 2019. Implications of coastal darkening for contaminant transport, bioavailability, and trophic transfer in northern coastal waters. Environ. Sci. Technol. 53, 7180-7182
    [99]
    McKay, J.L., Pedersen, T.F., Kienast, S.S., 2004. Organic carbon accumulation over the last 16 kyr off Vancouver Island, Canada:evidence for increased marine productivity during the deglacial. Quaternary Sci. Rev. 23(3-4), 261-281
    [100]
    Merhaby, D., Ouddane, B., Net, S., Halwani, J., 2020. Assessment of persistent organic pollutants in surface sediments along Lebanese coastal zone. Mar. Pollut. Bull. 153, 110947
    [101]
    Mil-Homens, M., Caetano, M., Costa, A.M., Lebreiro, S., Richter, T., de Stigter, H., Trancoso, M.A., Brito, P., 2013. Temporal evolution of lead isotope ratios in sediments of the Central Portuguese Margin:a fingerprint of human activities. Mar. Pollut. Bull. 74, 274-84
    [102]
    Mogollon, J.M., Dale, A.W., Fossing, H., Regnier, P., 2012. Timescales for the development of methanogenesis and free gas layers in recently deposited sediments of Arkona Basin (Baltic Sea). Biogeosciences 9, 1915-1933
    [103]
    Monte, B.E.O., Goldenfum, J.A., Michel, G.P., de Albuquerque Cavalcanti, J.R., 2021. Terminology of natural hazards and disasters:A review and the case of Brazil. Int. J. Disast. Risk Re. 52, 101970
    [104]
    Morales-Caselles, C., Viejo, J., Martí, E., Fernández, D.G., Cózar, A., 2021. An inshore-offshore sorting system revealed from global classification of ocean litter.Nat. Sustain.4,484-493
    [105]
    Neff, J.C., Ballantyne, A.P., Farmer, G.L., Mahowald, N.M., Conroy, J.L., Landry, C.C., Overpeck, J.T., Painter, T.H., Lawrence, C.R., Reynolds, R.L., 2008. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1(3), 189-195
    [106]
    Neumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J., 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS One 10(3), e0118571
    [107]
    Nhon, D.H., Thao, N.V., Lan, T.Đ., Ha, N.M., Nghi, D.T., Ha, T.M., Hao, D.M., Chien, N.V., Thanh, T.D., 2021. Enrichment and distribution of metals in surface sediments of the Thanh Hoa coastal area, Viet Nam. Reg. Stud. Mar. Sci. 41, 101574
    [108]
    Nicholls, R.J., Woodroffe, C.D., Burkett, V.R., 2009. Coastal degradation as an indicator of global change. In:Letcher, T.M. (Ed.), Climate Change, Observed Impacts on Planet. Elsevier B.V., Amsterdam, pp. 409-424
    [109]
    Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka, Y., Yool, A., 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059), 681-686
    [110]
    Pan, K., Wang, W.X., 2012. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 421, 3-16
    [111]
    Parsons, D.R., Schindler, R.J., Hope, J.A., Malarkey, J., Baas, J.H., Peakall, J., Manning, A.J., Ye, L., Simmons, S., Paterson, D.M., Aspden, R.J., Bass, S.J., Davies, A.G., Lichtman, I.D., Thorne, P.D., 2016. The role of biophysical cohesion on subaqueous bed form size. Geophys. Res. Lett. 43(4), 1566-1573
    [112]
    Posey, C., Silvester, R., 1975. Offshore structures.Nature258,192
    [113]
    Prager, E.J., Earle, S.A., 2000. The Oceans. McGraw-Hill Professional, New York, pp. 130-135
    [114]
    Qu, D., Yu, H., Sun, Y., Zhao, Y., Wei, Q., Yu, H., Kelly, R.M., Yuan, Y., 2019. Numerical study on the summertime patches of red tide in the adjacent sea of the Changjiang (Yangtze) River Estuary, China. Mar. Pollut. Bull. 143, 242-255
    [115]
    Quéré, C.L., Andres, R.J., Boden, T., Conway, T., Houghton, R.A., House, J.I., Marland, G., Peters, G.P., van der Werf, G.R., Ahlström, A., Andrew, R.M., Bopp, L., Canadell, J.G., Ciais, P., Doney, S.C., Friedlingstein, P., Huntingford, C., Jain, A.K., Jourdain, C., Kato, E., Keeling, R., Goldewijk, K.K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M., Schwinger, J., Sitch, S., Stocker, B.D., Viovy, N., Zaehle, S., Zeng, N., 2012. The global carbon budget 1959-2011. Earth Syst. Sci. Data 5, 165-185.
    [116]
    Raiswell, R., 2011. Iceberg-hosted nanoparticulate Fe in the Southern Ocean:Mineralogy, origin, dissolution kinetics and source of bioavailable Fe. Deep Sea Res. I 58, 1364-1375.
    [117]
    Rajasekaran, G., Murali, K., Nagan, S., Amoudhavally, V., Santhaswaruban, V., 2005. Contaminant transport modeling in marine clays. Ocean Eng. 32(2), 175-194
    [118]
    Reed, D.C., Slomp, C.P., de Lange, G.J., 2011. A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochim. Cosmochim. Acta 75, 5540-5558
    [119]
    Ripszam, M., Paczkowska, J., Figueira, J., Veenaas, C., Haglund, P., 2015. Dissolved organic carbon quality and sorption of organic pollutants in the Baltic Sea in light of future climate change. Environ. Sci. Technol. 49(3), 1445-1450
    [120]
    Römer, M., Sahling, H., Pape, T., Bohrmann, G., Spieß, V., 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. 117, C10015
    [121]
    Røy, H., Kallmeyer, J., Adhikari, R.R, Pockalny, R., Jørgensen, B.B., D'Hondt, S., 2012. Aerobic microbial respiration in 86-Million-year-old deep-sea red clay. Science 336, 922-925
    [122]
    Ruppel, C.D., Kessler, J.D., 2017. The interaction of climate change and methane hydrates. Rev. Geophys. 55(1), 126-168
    [123]
    Santos, R., Lirman, D., Serafy, J., 2011. Quantifying freshwater-induced fragmentation of submerged aquatic vegetation communities using a multi-scale landscape ecology approach. Mar. Ecol. Prog. Ser. 427, 233-246
    [124]
    Santos, R.O., Lirman, D., Pittman, S.J., 2016. Long-term spatial dynamics in vegetated seascapes:fragmentation and habitat loss in a human-impacted subtropical lagoon. Mar. Ecol. 37(1), 200-214
    [125]
    Salvadó, J.A., Grimalt, J.O., López, J.F., Palanques, A., Heussner, S., Pasqual, C., Sanchez-Vidal, A., Canals, M., 2017. Transfer of lipid molecules and polycyclic aromatic hydrocarbons to open marine waters by dense water cascading events. Prog. Oceanogr. 159, 178-194
    [126]
    Scavia, D., Bertani, I., Obenour, D.R., Turner, R.E., Forrest, D.R., Katin, A., 2017. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico. Proc. Natl. Acad. Sci. USA, 114(33), 8823-8828
    [127]
    Schartup, A.T., Mason, R.P., Balcom, P.H., Hollweg, T.A., Chen, C.Y., 2013. Methylmercury production in estuarine sediments:role of organic matter. Environ. Sci. Technol. 47(2), 695-700
    [128]
    Schmidt, F., Koch, BP., Elvert, M., Schmidt, G., Witt, M., Hinrichs, K.U., 2011. Diagenetic transformation of dissolved organic nitrogen compounds under contrasting sedimentary redox conditions in the Black Sea. Environ. Sci. Technol. 45(12), 5223-5229
    [129]
    Schuur, E.A., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost carbon feedback. Nature 520(7546), 171-9
    [130]
    Seeley, M.E., Song, B., Passie, R., Hale, R.C.,2020. Microplastics affect sedimentary microbial communities and nitrogen cycling.Nat. Commun.11,2372
    [131]
    Sevastyanov, V.S., Kuznetsova, O.V., Fedulov, V.S., Fedulova, V.Y., Dushenko, N.V., Naimushin, S.G., Bychkova, Y.V., Krivenko, A.P., 2020. Accumulation of organic matter, heavy metals, and rare-earth elements in marine sediment at different distance from the Indigirka River Delta. Geochem. Int. 58, 1313-1320
    [132]
    Sharifi, Z., Hossaini, S.M.T., Renella, G., 2016. Risk assessment for sediment and stream water polluted by heavy metals released by a municipal solid waste composting plant. J. Geochem. Explor. 169, 202-210
    [133]
    Shiu, R.F., Jiang, J.J., Kao, H.Y., Fang, M.D., Liang, Y.J., Tang, C.C., Lee, C.L., 20019. Alkylphenol ethoxylate metabolites in coastal sediments off southwestern Taiwan:Spatiotemporal variations, possible sources, and ecological risk. Chemosphere 225, 9-18.
    [134]
    Smith, V.H., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. R. 10, 126-139
    [135]
    Soderblom, L.A., Tomasko, M.G., Archinal, B.A., Becker, T.L., Bushroe, M.W., Cook, D.A., 2007. Topography and geomorphology of the Huygens landing site on Titan.Planet. Space Sci.55, 2015-2024
    [136]
    Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Miller, H.L., Averyt, K.B., Solomon, S., Tignor, M.,, 2007. Climate Change 2007-The Physical Science Basis:Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 19-91
    [137]
    Song, B., Cheng, Y., Yan, C., Han, Z., Ding, J., Li, Y., Wei, J., 2019. Influences of hydrate decomposition on submarine landslide. Landslides 16, 2127-2150
    [138]
    Stewart, B.D., Jenkins, S.R., Boig, C., Sinfield, C., Kennington, K., Brand, A.R., Lart, W., Kroger, R., 2021. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755(Pt 1), 143019
    [139]
    Stout, S.A., Payne, J.R., 2016. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Mar. Pollut. Bull. 108(1-2), 186-202
    [140]
    Stramma, L., Johnson, G.C., Sprintall, J., Mohrholz, V., 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655-658
    [141]
    Suami, R.B., Sivalingam, P., Al Salah, D.M., Grandjean, D., Mulaji, C.K., Mpiana, P.T., Breider, F., Otamonga, J.P., Pote, J., 2020. Heavy metals and persistent organic pollutants contamination in river, estuary, and marine sediments from Atlantic Coast of Democratic Republic of the Congo. Environ. Sci. Pollut. R. 27, 20000-20013
    [142]
    Sun, Q., Li, J., Wang, C., Chen, A., You, Y., Yang, S., Liu, H., Jiang, G., Wu, Y., Li, Y., 2022. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front. Environ. Sci. Eng. 16, 1
    [143]
    Sun, S., Lu, Y., Liu, Y., Wang, M., Hu, C., 2018. Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day and night satellite imagery. Geophys. Res. Lett. 45, 3212-3220
    [144]
    Syvitski, J.P.M., Voeroesmarty, C.J., Kettner, A.J., Green, P., 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376-380
    [145]
    Takashimizu, Y., Kawakami, G., Urabe, A., 2020. Tsunamis caused by offshore active faults and their deposits. Earth Sci. Rev. 211, 103380
    [146]
    Tamburrino, S., Passaro, S., Barsanti, M., Schirone, A., Delbono, I., Conte, F., Delfanti, R., Bonsignore, M., Del Core, M., Gherardi, S., Sprovieri, M., 2019. Pathways of inorganic and organic contaminants from land to deep sea:The case study of the Gulf of Cagliari (W Tyrrhenian Sea). Sci. Total Environ. 647, 334-341
    [147]
    Teeuw, R., Rust, D., Solana, C., Dewdney, C., Robertson, R., 2009. Large coastal landslides and tsunami hazard in the Caribbean.Eos 90(10), 81-82
    [148]
    Thiel, M., Gutow, L., 2005. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. 42, 181-264
    [149]
    Tiwari, A.K., Singh, P.K., De Maio, M., 2016. Evaluation of aquifer vulnerability in a coal mining of India by using GIS-based DRASTIC model. Arab. J. Geosci. 9(6), 1-15
    [150]
    Tryon, M.D., Brown, K.M., Torres, M.E., 2002. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II:Hydrological processes. Earth. Planet. Sci. Lett. 201, 541557
    [151]
    Tulcan, R.X.S., Ouyang, W., Lin, C., He, M., Wang, B., 2021. Vanadium pollution and health risks in marine ecosystems:Anthropogenic sources over natural contributions. Water Res. 207, 117838
    [152]
    Turner, A., Millward, G.E., 2002. Suspended particles:Their role in estuarine biogeochemical cycles. Estuar. Coast. Shelf S. 55(6), 857-883
    [153]
    Ullah, R., Yasir, M., Bibi, F., Abujamel, T.S., Hashem, A.M., Sohrab, S.S., Al-Ansari, A., Al-Sofyani, A.A., Al-Ghamdi, A.K., Al-sieni, A., Azhar, E.I., 2019. Taxonomic diversity of antimicrobial-resistant bacteria and genes in the Red Sea coast. Sci. Total Environ. 677, 474-483
    [154]
    Rao, J.V., Srikanth, K., Pallela, R., Rao, T.G., 2009. The use of marine sponge, Haliclona tenuiramosa as bioindicator to monitor heavy metal pollution in the coasts of Gulf of Mannar, India. Environ. Monit. Assess. 156(1-4), 451-459
    [155]
    Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Technical report:human alteration of the global nitrogen cycle:sources and consequences. Ecol. Appl. 7(3), 737
    [156]
    Wan, Z., Chen. J., 2018. Human errors are behind most oil-tanker spills. Nature 560, 161-163
    [157]
    Wang, H., Wang, G., Gu, W., Montero-Serra, I., 2020. Macroalgal blooms caused by marine nutrient changes resulting from human activities. J. Appl. Ecol. 57(4), 766-776
    [158]
    Well, P.G., CAmpbell, J., Etkin, D., Gary, J. S., Grey, C., Johnston, P., Koefoed, J., Meyer, T.A., Molloy, F.C., Wilkins, T., 2009. Estimates of oil entering the marine environment from sea-based activities, Reports and Studies No. 75. Energy Environ. 19(5), 765-765.
    [159]
    Whitchurch, A., 2010. Release through erosion. Nat. Geosci. 3(12), 820
    [160]
    Whitney, F.A., Freeland, H.J., Robert, M., 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179-199
    [161]
    Woodall, L.C., Sanchez-Vidal, A., Canals, M., Paterson, G.L., Coppock, R., Sleight, V., Calafat, A., Rogers, A.D., Narayanaswamy, B.E., Thompson, R.C., 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317
    [162]
    Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B.C., Lotze, H.K., Micheli, F., Palumbi, S.R., Sala, E., Selkoe, K.A., Stachowicz, J.J., Watson, R., 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800), 787-790
    [163]
    William S. R., 2007. Oceanic methane biogeochemistry. Chem. Rev. 107, 486-513
    [164]
    Wu, Q., Xiao, S.-K., Pan, C.-G., Yin, C., Wang, Y.-H., Yu, K.-F., 2022. Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. Sci. Total Environ. 806, 150439
    [165]
    Wurtsbaugh, W.A., Paerl, H.W., Dodds, W.K., 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIRES Water 6(5), e1373
    [166]
    Yu, J., Zhou, D., Yu, M., Yang, J., Li, Y., Guan, B., Wang, X., Zhan, C., Wang, Z., Qu, F., 2021. Environmental threats induced heavy ecological burdens on the coastal zone of the Bohai Sea, China. Sci. Total Environ. 765, 142694
    [167]
    Zaborska, A., Beszczynska-Moller, A., Wlodarska-Kowalczuk, M., 2017. History of heavy metal accumulation in the Svalbard area:Distribution, origin and transport pathways. Environ. Pollut. 231(Pt 1), 437-450
    [168]
    Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693
    [169]
    Zakaria, M.P., Okuda, T., Takada, H., 2001. Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia:Applications of biomarkers for identifying sources of oil pollution. Mar. Pollut. Bull. 42, 1357-1366
    [170]
    Zaneveld, J.R., Burkepile, D.E., Shantz, A.A., Pritchard, C.E., McMinds, R., Payet, J.P., Welsh, R., Correa, A.M., Lemoine, N.P., Rosales, S., Fuchs, C., Maynard, J.A., Thurber, R.V., 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833
    [171]
    Zhang, R., Pei, J., Zhang, R., Wang, S., Zeng, W., Huang, D., Wang, Y., Zhang, Y., Wang, Y., Yu, K., 2018. Occurrence and distribution of antibiotics in mariculture farms, estuaries and the coast of the Beibu Gulf, China:Bioconcentration and diet safety of seafood. Ecotox. Environ. Safe. 154, 27-35
    [172]
    Zhang, R., Tang, J., Li, J., Zheng, Q., Liu, D., Chen, Y., Zou, Y., Chen, X., Luo, C., Zhang, G., 2013. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China:Occurrence, distribution and ecological risks. Environ. Pollut. 174, 71-77
    [173]
    Zhao, Y., Liu, Q., Huang, R., Pan, H., Xu, M., 2020. Recent evolution of coastal tidal flats and the impacts of intensified human activities in the modern radial sand ridges, East China. Int. J. Environ. Res. Public Health 17(9), 3191
    [174]
    Zhou, Q., Bao, Y., Liu, W., 2017. Ecological Geoscience. Science Press, Beijing (In Chinese)
    [175]
    Zhou, Q., Gibson, C.E., Foy, R.H., 2000. Long-term changes of nitrogen and phosphorus loadings to a large lake in north-west Ireland. Water Res. 34(3), 922-926
    [176]
    Zhou, Q., Li, D., Wang, T., Hu, X., 2021. Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. J. Hazard. Mater. 404, 124046
    [177]
    Zhou, Q., Liu, Y., Li, T., Zhao, H., Alessi, D.S., Liu, W., Konhauser, K.O., 2020. Cadmium adsorption to clay-microbe aggregates:Implications for marine heavy metals cycling. Geochim. Cosmochim. Acta 290, 124-136
    [178]
    Zhou, Q., Zhu, Y., 1997. Pollution monitoring of marine organisms grown in the Zhoushan Sea of China. J. Environ. Sci.- China 9(3), 288-292
    [179]
    Zinke, L., 2020. Moving marine microplastics.Nat. Rev. Earth Environ.1,186
    [180]
    Zúñiga, D., Kaal, J., Villacieros-Robineau, N., Froján, M., Alonso-Pérez, F., De la Granda, F., Castro, C.G., 2019. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean):Comparison between elemental, isotopic and molecular indicators. J. Anal. Appl. Pyrol. 139, 114-122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return