Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
J.L.R. Touret, M. Santosh, J.M. Huizenga. Composition and evolution of the continental crust: Retrospect and prospect[J]. Geoscience Frontiers, 2022, 13(5): 101428. doi: 10.1016/j.gsf.2022.101428
Citation: J.L.R. Touret, M. Santosh, J.M. Huizenga. Composition and evolution of the continental crust: Retrospect and prospect[J]. Geoscience Frontiers, 2022, 13(5): 101428. doi: 10.1016/j.gsf.2022.101428

Composition and evolution of the continental crust: Retrospect and prospect

doi: 10.1016/j.gsf.2022.101428
Funds:

lie Dessens, Library Ecole des Mines- MINES Paris-Tech, for providing the photo in Fig. 1. We would like to thank two anonymous reviewers for their valuable comments and suggestions, and we would like to thank the Associate Editor, Dr. Vinod Samuel and the editorial assistant, Dr. Lily Wang, for their kind help and support.

Thanks are due to Amé

  • Received Date: 2022-05-27
  • Accepted Date: 2022-06-29
  • Rev Recd Date: 2022-06-13
  • Publish Date: 2022-07-01
  • Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000℃, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels.
  • loading
  • [1]
    Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-assisted anatexis:Experimental melting in the system haplogranite H2O-NaCl-KCl at deep-crustal conditions. Earth Planet. Sci. Lett. 374, 111-120
    [2]
    Bakker, R.J., Jansen, J.B.H., 1990. Preferential water leakage from fluid inclusions by means of mobile dislocations. Nature 345, 58-60
    [3]
    Ballhaus, C.G., Stumpfl, E.F., 1986. Sulfide and platinum mineralization in the Merensky Reef:evidence from hydrous silicates and fluid inclusions. Contrib. Mineral. Petrol. 94, 193-204
    [4]
    Bhattacharya, S., Panigrahi, M., Jayananda, M., 2014. Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India:Implications to emplacement and evolution of late-stage fluids. J. Asian Earth Sci. 91, 1-18
    [5]
    Beloussov, V.V., 1966. Modern concepts on the structure and development of the Earth's crust and upper of continents. Quart. J. Geol. Soc. London 122, 293-314
    [6]
    Bolder-Schrijver, L., Kriegsmann, L., Touret, J.L.R., 2000. Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from central Sri-Lanka. J. Metamorph. Geol. 18, 259-269
    [7]
    Bouvier, L., Dessens, A., 2020. Cybèle montrant à vulcain les trésors de la terre:entrée de l'esquisse d'Abel de Pujol dans les collections de l'École des mines de Paris. Bulletin ABC Mines 43 (in French with English abstract).
    [8]
    Brown, M., Johnson, T., 2019. Time's arrow, time's cycle:granulite metamorphism and geodynamics. Min. Mag. 83, 323-338
    [9]
    Braile, L.W., Chiangl, C. S., 1986. The continental Mohorovičič discontinuity:Results from near-vertical and wide-angle seismic reflection studies.In:Barazangi, M., Brown, L. (Eds.), Reflection seismology:A global perspective 13, Geodynamics Series, American Geophysical Union, pp. 257-272
    [10]
    Cawood, P.A., Buchan, C., 2007. Linking accretionary orogenesis with supercontinent assembly. Earth Sci. Rev. 82, 217-256
    [11]
    Chardon, D., Jayananda, M., Chetty, T.R.K., Peucat, J.J., 2008. Precambrian continental strain and shear zone patterns:South Indian case. J. Geophys. Res.-Solid Earth 113, B08402
    [12]
    Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types:25 years later.Aust. J. Earth Sci. 48, 489-499
    [13]
    Compston, W., Pidgeon, R.T., 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766-769
    [14]
    Coolen, J.J. 1982. Carbonic fluid inclusions in granulites from Tanzania-a comparison of geobarometric methods based on fluid density and mineral chemistry. Chem. Geol. 37, 59-77
    [15]
    Damman, A.H., Kars, S.M., Touret, J.L., Rieffe, E.C., Kramer, J.A., Vis, R.D., Pintea, I., 1996. PIXE and SEM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Rumania. Eur. J. Mineral. 8, 1081-1096
    [16]
    De Saussure, H.B., 1787. Voyages dans les Alpes précédés d'un Essai sur l'histoire naturelle des environs de Genève. Tome Premier. Samuel Fauche, Imprimeur à Neuchatel, 585 pp (in French).
    [17]
    Dunai, T.J., Touret, J.L.R., 1993. A noble-gas study of a granulite sample from the Nilgiri Hills, Southern India:implications for granulite formation. Earth Planet. Sci. Lett. 119, 271-281
    [18]
    Dupuy, C., Leyreloup, A., Vernieres, J., 1979. The lower continental crust of the Massif Central (Bournac, France)-with special references to REE, U and Th composition, evolution, heat-flow production. Phys. Chem. Earth 11, 401-415
    [19]
    Eglinger, A., Farraina, C., Tarantola, A., André-Mayer, A.S., Vanderhaeghe, O., Boiron, M.C., Dubessy, J., Richard, A., Brouand, M., 2014. Hypersaline fluids generated by high-grade metamorphism of evaporites:fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt. Contrib. Mineral. Petrol. 167, 1-28
    [20]
    Engvik, A., Ihlen, P., Austrheim, H., 2014. Characterisation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geosci. Front. 5, 1-14
    [21]
    Figuier, L., 1863. La Terre avant le Déluge (The Earth before the Flood). Second edition, L. Hachette, Paris, 432 p (in French).
    [22]
    Franz, L., Harlov, D.E., 1998. High-grade K-feldspar veining in granulites from the Ivrea-Verbano Zone, northern Italy:fluid flow in the lower crust and implications for granulite facies genesis. J. Geol. 106, 455-472
    [23]
    Frezzotti, M.L., 2019. Diamond growth from organic compounds in hydrous fluids deep within the Earth.Nat. Commun. 10,4952
    [24]
    Frezzotti, M.L., Touret, J.L.R., 2014. CO2, carbonate-rich melts, and brines in the mantle. Geosci. Front. 5, 697-710
    [25]
    Friend, C.R.L., Nutman, A.P., 1991. Shrimp U-Pb geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India. J. Geol. Soc. India 38, 357-368
    [26]
    Fu, B., Touret, J.L.R., 2014. From granulite fluids to quartz-carbonate mega-shearzones:The gold rush. Geosci. Front. 5, 747-758
    [27]
    Fyfe, W.S., 1973. The granulite facies, partial melting and the Archaean crust. Philos. Trans. R. Soc. London A273, 457-462
    [28]
    Gordon, S.M., Luffi, P., Hacker, B., Valley, J., Spicuzza, M., Kozdon, R., Kelemen, P., Ratshbacher, L., Minaev, V., 2012. The thermal structure of continental crust in active orogens:insights from Miocene eclogite and granulite xenoliths of the Pamir Mountains. J. Metamorph. Geol. 30, 413-434
    [29]
    Guzmics, T., Mitchell, R.H., Szabó, C., Berkesi, M., Milke, R., Ratter, K., 2012. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania):evolution of carbonated nephelinitic magma. Contrib. Mineral. Petrol. 164, 101-122
    [30]
    Haak V., Hutton R., 1986. Electrical resistivity in continental lower crust. J. Geol. Soc. London, Spec. Publ. 24, 35-49
    [31]
    Hajob, J.L., Essene, E.J., Ruiz, J., Ortega-Guttierez, F., Aranda-Gomez, J.J., 1989. Young high-temperature granulites from the base of the crust in central Mexico. Nature 342, 265-268
    [32]
    Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C., Bray, C.J. (2008) Fluid and halide melt inclusions of magmatic origin in the ultramafic and lower banded series, Stillwater Complex, Montana, USA. J. Petrol. 49-6, 1133-1160
    [33]
    Harlov, D.E., Newton, R.C., Hansen, E.C., Janardhan, A.S., 1997. Oxide and sulphide minerals in highly oxidized, Rb-depleted Archaean granulites of the Shevaroy Hills Massif, South India:oxidation states and the role of metamorphic fluids.J. Metamorph. Geol. 15,701-717
    [34]
    Hawkesworth, C.J., Kemp, A.I.S., 2006a. Evolution of the continental crust. Nature 443, 811-817
    [35]
    Hawkesworth, C.J., Kemp, A.I.S. 2006b. The differentiation and rates of generation of the continental crust. Chem. Geol. 226, 134-143
    [36]
    Hawkesworth, C., Cawood, P.A., Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165-173
    [37]
    Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2020. The evolution of the continental crust and the onset of plate tectonics. Front. Earth Sci. 8, 326
    [38]
    Heinrich, C.A., Gunther, D., Audétat, A., Ulrich, T., Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27, 755-758
    [39]
    Huizenga, J.M., 2001. Thermodynamic modelling of C-O-H fluids. Lithos 55, 101-114
    [40]
    Hoefs, J., Touret, J., 1975. Fluid inclusion and carbon isotope study from Bamble granulites (South Norway). Contrib. Mineral. Petrol. 52, 165-174
    [41]
    Holland, T.H., 1900. The charnockite series, a group of Archean hypersthenic rocks in Peninsular Indi. Mem. Geol. Surv. India 28, 192-249
    [42]
    Hurai, V., Huraiova, M., Thomas, R., 2011. Calciocarbonatite melts in plagioclase megacrysts and xenoliths from Plio-Pleistocene alkali basalt (Slovakia). In:Bakker, R.J., Baumgartner, M., Doppler, G. (Eds.), ECROFI XXI Abstracts, 9-11 August 2011, Leoben, Austria-Berichte der Geologischen Bundesanstalt 87, Wien, pp. 211-212.
    [43]
    Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., Kopylova, M.G., 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen:phase relationships, mineral compositions and trace-element residence. Contrib. Mineral. Petrol. 125, 375-392
    [44]
    Izraeli, E.I., Harris, J.W., Navon, O., 2001. Brine inclusions in diamonds:a new upper mantle fluid. Earth Planet. Sci. Lett. 187, 323-332
    [45]
    Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B.F., 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada:Evidence for early continental crust. Geology 34, 245-248
    [46]
    Jurine, L., 1806. Lettre à Monsieur Gillet-Laumont. J. Mines 19, 376-378
    [47]
    Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, L., Danyushevsky, V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V., 2004. Kimberlite melts rich in alkali chlorides and carbonates:a potent metasomatic agent in the mantle. Geology 32, 845-848
    [48]
    Katz, M.B., 1987. Graphite deposits of Sri Lanka:a consequence of granulite facies metamorphism. Miner. Deposita 22, 18-25
    [49]
    Klein, E.L., Harris, C., Renac, C., Giret, A., Moura, C.A., Fuzikawa, K., 2006. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil. Miner. Deposita 41, 160-178
    [50]
    Kröner, A., 1985. Evolution of the Archean continental crust. Annu. Rev. Earth Planet. Sci. 13, 49-74
    [51]
    Lobanov, K.V., Chicherov, M.V., Sharov, N.V., 2021. The 50th anniversary of the start of drilling the Kola super-deep well. Arktika i Sever (Arctic and North) 44, 267-284
    [52]
    Li, S.S., Santosh, M., Palin, R.M., 2018. Metamorphism during the Archean-Paleoproterozoic transition associated with microblock amalgamation in the Dharwar craton, India. J. Petrol. 59, 2435-2462
    [53]
    Luque, F.J., Huizenga, J.M., Crespo-Feo, E., Wada, H., Ortega, L., Barrenechea, J.F., 2014. Vein graphite deposits:geological settings, origin, and economic significance. Mineralium Deposita 49, 261-277
    [54]
    Luth, R.W., Stachel, T., 2014. The buffering capacity of lithospheric mantle:implications for diamond formation. Contrib. Mineral. Petrol. 168, 1-12
    [55]
    Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307-315
    [56]
    Marty, B., Bekaert, D.V., Broadley, M.W., Jaupart, C., 2019. Geochemical evidence for high volatile fluxes from the mantle at the end of the Archean. Nature 575, 485-488
    [57]
    Matthews, A., Fouillac, C., Hill, R., O'Nions, R.K., Oxburgh, E.R., 1987. Mantle-derived volatiles in continental crust:the Massif Central of France. Earth Planet. Sci. Lett. 85, 117-128
    [58]
    Michot, P., 1956. La géologie des zones profondes de l'écorce terrestre. Ann. Soc. géol. Belg 80, 19-25 (in French)
    [59]
    Mitchell, R.H., Giuliani, A., O'Brien, H., 2019. What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15, 381-386
    [60]
    Mullis, J., Dubessy, J., Poty, B., O'Neill, J., 1994. Fluid regimes during late stages of a continental collision. Geochim. Cosmochim. Acta 58, 2239-2267
    [61]
    Newton, R.C., Manning, C.E., 2005. Solubilities of anhydrite, CaSO4, in NaCl-H2O solutions at high pressures and temperatures; applications to fluid-rock interaction. J. Petrol. 46, 701-716
    [62]
    Newton, R.C., Tsunogae, T., 2014. Incipient charnockite:Characterization at the type localities. Precambrian Res. 253, 38-49
    [63]
    Newton, R.C., Touret, J.L., Aranovich, L.Y., 2014. Fluids and H2O activity at the onset of granulite facies metamorphism. Precambrian Res. 253, 17-25
    [64]
    Newton, R.C., 2020. Young and old granulites:A volatile connection. J. Geol. 128, 395-413
    [65]
    Newton, R.C., Aranovitch, L. Ya., Touret, J.L.R., 2019. Streaming of saline fluids through Archean crust:Another view of charnockite-granite relations in southern India. Lithos 346-347, 105157. https://doi.org/10.1016/j.lithos.2019.105157
    [66]
    Palin, R.M., Santosh, M., 2021. Plate tectonics:What, where, why, and when? Gondwana Res. 100, 3-24
    [67]
    Pirajno, F., 2018. Halogens in hydrothermal fluids and their role in the formation and evolution of hydrothermal mineral systems. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. In:Harlov, D.E., Aranovich, L. (Eds.), The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Springer, Cham, pp. 759-804.
    [68]
    Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G., 2016. Origin of REE-ferrocarbonatites in Southern Siberia (Russia):implications based on melt and fluid inclusions. Mineral. Petrol. 110, 845-859
    [69]
    Rajesh, H.M. and Santosh, M., 2004. Charnockitic magmatism in southern India. J. Earth Sys. Sci. 113, 565-585
    [70]
    Rajesh, H. M., 2007. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains:a case study from southern India.Contrib. Mineral. Petrol. 154, 591-606
    [71]
    Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, Min. Soc. Am. 12, 646 pp
    [72]
    Rudnick, R.L., Gao, S., Holland, H.D., Turekian, K.K., 2003. Composition of the continental crust. In:R.L. Rudnick, (Ed.), Treatise on Geochemistry, Volume 3, pp.1-64.
    [73]
    Safonov, O.G., Butvina, V.G., Limanov, E.V., Kosova, S.A., 2019. Mineral indicators of reactions involving fluid salt components in the deep lithosphere. Petrology 27, 525-556
    [74]
    Samuel, V.O., Santosh, M., Jang, Y., Kwon, S., 2021. Acidic fluids in the Earth's lower crust. Sci. Rep. 11, 1-8
    [75]
    Santosh, M., 1992. Carbonic fluids in granulites:cause or consequence? J. Geol. Soc. India 39, 375-399
    [76]
    Santosh, M., Omori, S., 2008. CO2 flushing:A plate tectonic perspective. Gondwana Res. 13, 86-102
    [77]
    Schutt, D.L., Lowry, A.L., Buehler, J.S., 2018. Moho temperature and mobility of lower crust in the western United States. Geology 46, 219-222
    [78]
    Simakov, S.K., 2003. Physico-chemical aspects of diamond-bearing eclogite formation in the upper mantle and Earth crust rocks. Russia Academy of Sciences, Far East Branch, Magadan, 187 (in Russian and English).
    [79]
    Simakov, S., Stegnitskyi, Y., 2021. A new pyrope-based mineralogical petrological method for identifying the diamond potential of kimberlite/lamproite deposits. Ore En. Res. Geol. 7, 100013
    [80]
    Sobolev, N., Logvinova, A., Tomilenko, A.A., Wirth, R., 2019. Minerals and fluid inclusions in diamonds from the Urals placers, Russia:Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 266, 197-219
    [81]
    Sorby, H.C., 1858. On the microscopical, structure of crystals, indicating the origin of minerals and rocks. Quart. J. Geo. Soc. London 14, 453-500
    [82]
    Stagno, V., Fei, Y., 2020. The redox boundaries of Earth's interior. Elements 16, 167-172
    [83]
    Touret, J., 1979. Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège Méridionale) sont-elles liées à d'anciennes évaporites? Sciences de la Terre, Nancy 33, 95-97
    [84]
    Touret, J.L.R., 1985. Fluid regime in Southern Norway:the record of fluid inclusions. In:Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces, NATO ASI Series C-158, D. Reidel Pub., Dordrecht, pp. 517-550
    [85]
    Touret, J.L.R., 1998. Lower crustal granulites:"soaks" and "pontiffs" revisited. Keynote address, Annual Meeting Metamorphic Study group, Mineralogical Society, Burlington House.
    [86]
    Touret, J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russ. Geol. Geoph. 50, 1052-1062.
    [87]
    Touret, J., 2021. Fluid regime during the formation of the continental crust. Academia Letters. Article 655.
    [88]
    Touret, J.L., Hansteen, T. 1988. Geothermobarometry and fluid inclusions in a rock from the Doddabetta charnockite complex, Southwest India. Rend. Soc. Ital. Mineral. Petrol. 43, 65-82
    [89]
    Touret, J.L.R., Hartel, T.H.D., 1990. Synmetamorphic fluid inclusions in granulites. In:Vielzeuf, D., Vidal, Ph. (Eds.), Granulites and crustal evolution, NATO ASI Series C311, Kluwer Acad. Pub., Dordrecht, pp. 397-417
    [90]
    Touret, J.L.R., Marquis, G., 1994. Fluides profonds et conductivité électrique de la croûte continentale inférieure. C. R. Acad. Sci. Paris, t. 318, série II, 1469-1482 (in French with English abstract).
    [91]
    Touret, J.L.R., Huizenga, J.M., 2011. Fluids in granulites. In:Van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds.), Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis of the Limpopo Complex of South Africa. Geol. Soc. Am. Mem. 207, pp. 25-37.
    [92]
    Touret, J.L. and Huizenga, J.M., 2012. Fluid-assisted granulite metamorphism:a continental journey. Gondwana Res. 21, 224-235
    [93]
    Touret, J.L.R., Nijland, T.G., 2013. Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. In:Harlov, D.E., Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rocks. Lecture Notes in Earth System Science. Springer-Verlag, Berlin-Heidelberg, pp. 411-465
    [94]
    Touret, J.L.R., Huizenga, J.M., 2020. Large-scale fluid transfer between mantle and crust during supercontinent amalgamation and disruption. Russ. Geol. Geoph. 61, 527-542
    [95]
    Touret, J.L.R., Santosh M., Huizenga J.M., 2016. High-temperature granulites and supercontinents. Geosci. Front. 7, 101-113
    [96]
    Touret, J.L.R., Newton, R.C., Cuney, M., 2019. Incipient charnockites:the role of brines. Geosci. Front. 10, 1789-1901
    [97]
    Touret, J.L.R., Huizenga, J.M., Kehelpannala, W., Piccoli, F., 2019. Vein-type graphite in Sri-Lanka:the ultimate fate of granulite fluids. Chem. Geol. 508, 167-181
    [98]
    Walter, B.J., Steele-MacInnis, M., Giebel, R.J., Marks, M.A.W., Markl, G., 2020. Complex carbonate-sulfate brines in fluid inclusions from carbonatites. Geochim. Cosmochim. Acta 277, 224-242
    [99]
    Watson, E.B., Brenan, J.M., 1987. Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett. 85, 497-515
    [100]
    Weiss, Y., McNeill, J., Graham Pearson, D., Nowell, G.M., Ottley, C.J., 2015. Highly saline fluids from a subducting slab as the source of fluid-rich diamonds. Nature 504, 339-344
    [101]
    Wever, T., 1989. The Conrad discontinuity and the top of the reflective lower crust-do they coincide? Tectonophysics 157, 39-58
    [102]
    Yang, C.X., Santosh, M., Tsunogae, T., Shaji, E., Gao. P., Kwon, S., 2021. Global type area charnockites in southern India revisited:Implications for Earth's oldest supercontinent. Gondwana Res. 94, 106-132
    [103]
    Zakharchenko, A.I., 1971. On time and physico-chemical conditions of mobilization, transport and precipitation of tungsten and tin in postmagmatic processes (exemplified by intragranitic chamber pegmatites). In Mineralogy and geochemistry of tungsten deposits (Materials of 2nd All-Union Symposium on Mineralogy, Geochemistry and Genesis of Tungsten Deposits of USSR). Leningrad University Publishing House, Leningrad pp. 287-306 (in Russian). Extended abstract in English in Fluid Inclusion Research Proceedings of COFFI 6, pp. 191-194.
    [104]
    Zhamaletdinov, A.L., 2019. Intermediate conducting layers in the continental crust:myth and reality. In:Nurgaliev, D., Khairullina, N. (Eds.), Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields, Springer Proceedings in Earth and Environmental Sciences. Springer, Cham pp. 349-358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return