Citation: | J.L.R. Touret, M. Santosh, J.M. Huizenga. Composition and evolution of the continental crust: Retrospect and prospect[J]. Geoscience Frontiers, 2022, 13(5): 101428. doi: 10.1016/j.gsf.2022.101428 |
[1] |
Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-assisted anatexis:Experimental melting in the system haplogranite H2O-NaCl-KCl at deep-crustal conditions. Earth Planet. Sci. Lett. 374, 111-120
|
[2] |
Bakker, R.J., Jansen, J.B.H., 1990. Preferential water leakage from fluid inclusions by means of mobile dislocations. Nature 345, 58-60
|
[3] |
Ballhaus, C.G., Stumpfl, E.F., 1986. Sulfide and platinum mineralization in the Merensky Reef:evidence from hydrous silicates and fluid inclusions. Contrib. Mineral. Petrol. 94, 193-204
|
[4] |
Bhattacharya, S., Panigrahi, M., Jayananda, M., 2014. Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India:Implications to emplacement and evolution of late-stage fluids. J. Asian Earth Sci. 91, 1-18
|
[5] |
Beloussov, V.V., 1966. Modern concepts on the structure and development of the Earth's crust and upper of continents. Quart. J. Geol. Soc. London 122, 293-314
|
[6] |
Bolder-Schrijver, L., Kriegsmann, L., Touret, J.L.R., 2000. Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from central Sri-Lanka. J. Metamorph. Geol. 18, 259-269
|
[7] |
Bouvier, L., Dessens, A., 2020. Cybèle montrant à vulcain les trésors de la terre:entrée de l'esquisse d'Abel de Pujol dans les collections de l'École des mines de Paris. Bulletin ABC Mines 43 (in French with English abstract).
|
[8] |
Brown, M., Johnson, T., 2019. Time's arrow, time's cycle:granulite metamorphism and geodynamics. Min. Mag. 83, 323-338
|
[9] |
Braile, L.W., Chiangl, C. S., 1986. The continental Mohorovičič discontinuity:Results from near-vertical and wide-angle seismic reflection studies.In:Barazangi, M., Brown, L. (Eds.), Reflection seismology:A global perspective 13, Geodynamics Series, American Geophysical Union, pp. 257-272
|
[10] |
Cawood, P.A., Buchan, C., 2007. Linking accretionary orogenesis with supercontinent assembly. Earth Sci. Rev. 82, 217-256
|
[11] |
Chardon, D., Jayananda, M., Chetty, T.R.K., Peucat, J.J., 2008. Precambrian continental strain and shear zone patterns:South Indian case. J. Geophys. Res.-Solid Earth 113, B08402
|
[12] |
Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types:25 years later.Aust. J. Earth Sci. 48, 489-499
|
[13] |
Compston, W., Pidgeon, R.T., 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766-769
|
[14] |
Coolen, J.J. 1982. Carbonic fluid inclusions in granulites from Tanzania-a comparison of geobarometric methods based on fluid density and mineral chemistry. Chem. Geol. 37, 59-77
|
[15] |
Damman, A.H., Kars, S.M., Touret, J.L., Rieffe, E.C., Kramer, J.A., Vis, R.D., Pintea, I., 1996. PIXE and SEM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Rumania. Eur. J. Mineral. 8, 1081-1096
|
[16] |
De Saussure, H.B., 1787. Voyages dans les Alpes précédés d'un Essai sur l'histoire naturelle des environs de Genève. Tome Premier. Samuel Fauche, Imprimeur à Neuchatel, 585 pp (in French).
|
[17] |
Dunai, T.J., Touret, J.L.R., 1993. A noble-gas study of a granulite sample from the Nilgiri Hills, Southern India:implications for granulite formation. Earth Planet. Sci. Lett. 119, 271-281
|
[18] |
Dupuy, C., Leyreloup, A., Vernieres, J., 1979. The lower continental crust of the Massif Central (Bournac, France)-with special references to REE, U and Th composition, evolution, heat-flow production. Phys. Chem. Earth 11, 401-415
|
[19] |
Eglinger, A., Farraina, C., Tarantola, A., André-Mayer, A.S., Vanderhaeghe, O., Boiron, M.C., Dubessy, J., Richard, A., Brouand, M., 2014. Hypersaline fluids generated by high-grade metamorphism of evaporites:fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt. Contrib. Mineral. Petrol. 167, 1-28
|
[20] |
Engvik, A., Ihlen, P., Austrheim, H., 2014. Characterisation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geosci. Front. 5, 1-14
|
[21] |
Figuier, L., 1863. La Terre avant le Déluge (The Earth before the Flood). Second edition, L. Hachette, Paris, 432 p (in French).
|
[22] |
Franz, L., Harlov, D.E., 1998. High-grade K-feldspar veining in granulites from the Ivrea-Verbano Zone, northern Italy:fluid flow in the lower crust and implications for granulite facies genesis. J. Geol. 106, 455-472
|
[23] |
Frezzotti, M.L., 2019. Diamond growth from organic compounds in hydrous fluids deep within the Earth.Nat. Commun. 10,4952
|
[24] |
Frezzotti, M.L., Touret, J.L.R., 2014. CO2, carbonate-rich melts, and brines in the mantle. Geosci. Front. 5, 697-710
|
[25] |
Friend, C.R.L., Nutman, A.P., 1991. Shrimp U-Pb geochronology of the Closepet granite and Peninsular gneiss, Karnataka, South India. J. Geol. Soc. India 38, 357-368
|
[26] |
Fu, B., Touret, J.L.R., 2014. From granulite fluids to quartz-carbonate mega-shearzones:The gold rush. Geosci. Front. 5, 747-758
|
[27] |
Fyfe, W.S., 1973. The granulite facies, partial melting and the Archaean crust. Philos. Trans. R. Soc. London A273, 457-462
|
[28] |
Gordon, S.M., Luffi, P., Hacker, B., Valley, J., Spicuzza, M., Kozdon, R., Kelemen, P., Ratshbacher, L., Minaev, V., 2012. The thermal structure of continental crust in active orogens:insights from Miocene eclogite and granulite xenoliths of the Pamir Mountains. J. Metamorph. Geol. 30, 413-434
|
[29] |
Guzmics, T., Mitchell, R.H., Szabó, C., Berkesi, M., Milke, R., Ratter, K., 2012. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania):evolution of carbonated nephelinitic magma. Contrib. Mineral. Petrol. 164, 101-122
|
[30] |
Haak V., Hutton R., 1986. Electrical resistivity in continental lower crust. J. Geol. Soc. London, Spec. Publ. 24, 35-49
|
[31] |
Hajob, J.L., Essene, E.J., Ruiz, J., Ortega-Guttierez, F., Aranda-Gomez, J.J., 1989. Young high-temperature granulites from the base of the crust in central Mexico. Nature 342, 265-268
|
[32] |
Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C., Bray, C.J. (2008) Fluid and halide melt inclusions of magmatic origin in the ultramafic and lower banded series, Stillwater Complex, Montana, USA. J. Petrol. 49-6, 1133-1160
|
[33] |
Harlov, D.E., Newton, R.C., Hansen, E.C., Janardhan, A.S., 1997. Oxide and sulphide minerals in highly oxidized, Rb-depleted Archaean granulites of the Shevaroy Hills Massif, South India:oxidation states and the role of metamorphic fluids.J. Metamorph. Geol. 15,701-717
|
[34] |
Hawkesworth, C.J., Kemp, A.I.S., 2006a. Evolution of the continental crust. Nature 443, 811-817
|
[35] |
Hawkesworth, C.J., Kemp, A.I.S. 2006b. The differentiation and rates of generation of the continental crust. Chem. Geol. 226, 134-143
|
[36] |
Hawkesworth, C., Cawood, P.A., Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165-173
|
[37] |
Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2020. The evolution of the continental crust and the onset of plate tectonics. Front. Earth Sci. 8, 326
|
[38] |
Heinrich, C.A., Gunther, D., Audétat, A., Ulrich, T., Frischknecht, R., 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27, 755-758
|
[39] |
Huizenga, J.M., 2001. Thermodynamic modelling of C-O-H fluids. Lithos 55, 101-114
|
[40] |
Hoefs, J., Touret, J., 1975. Fluid inclusion and carbon isotope study from Bamble granulites (South Norway). Contrib. Mineral. Petrol. 52, 165-174
|
[41] |
Holland, T.H., 1900. The charnockite series, a group of Archean hypersthenic rocks in Peninsular Indi. Mem. Geol. Surv. India 28, 192-249
|
[42] |
Hurai, V., Huraiova, M., Thomas, R., 2011. Calciocarbonatite melts in plagioclase megacrysts and xenoliths from Plio-Pleistocene alkali basalt (Slovakia). In:Bakker, R.J., Baumgartner, M., Doppler, G. (Eds.), ECROFI XXI Abstracts, 9-11 August 2011, Leoben, Austria-Berichte der Geologischen Bundesanstalt 87, Wien, pp. 211-212.
|
[43] |
Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., Kopylova, M.G., 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen:phase relationships, mineral compositions and trace-element residence. Contrib. Mineral. Petrol. 125, 375-392
|
[44] |
Izraeli, E.I., Harris, J.W., Navon, O., 2001. Brine inclusions in diamonds:a new upper mantle fluid. Earth Planet. Sci. Lett. 187, 323-332
|
[45] |
Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B.F., 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada:Evidence for early continental crust. Geology 34, 245-248
|
[46] |
Jurine, L., 1806. Lettre à Monsieur Gillet-Laumont. J. Mines 19, 376-378
|
[47] |
Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, L., Danyushevsky, V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V., 2004. Kimberlite melts rich in alkali chlorides and carbonates:a potent metasomatic agent in the mantle. Geology 32, 845-848
|
[48] |
Katz, M.B., 1987. Graphite deposits of Sri Lanka:a consequence of granulite facies metamorphism. Miner. Deposita 22, 18-25
|
[49] |
Klein, E.L., Harris, C., Renac, C., Giret, A., Moura, C.A., Fuzikawa, K., 2006. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil. Miner. Deposita 41, 160-178
|
[50] |
Kröner, A., 1985. Evolution of the Archean continental crust. Annu. Rev. Earth Planet. Sci. 13, 49-74
|
[51] |
Lobanov, K.V., Chicherov, M.V., Sharov, N.V., 2021. The 50th anniversary of the start of drilling the Kola super-deep well. Arktika i Sever (Arctic and North) 44, 267-284
|
[52] |
Li, S.S., Santosh, M., Palin, R.M., 2018. Metamorphism during the Archean-Paleoproterozoic transition associated with microblock amalgamation in the Dharwar craton, India. J. Petrol. 59, 2435-2462
|
[53] |
Luque, F.J., Huizenga, J.M., Crespo-Feo, E., Wada, H., Ortega, L., Barrenechea, J.F., 2014. Vein graphite deposits:geological settings, origin, and economic significance. Mineralium Deposita 49, 261-277
|
[54] |
Luth, R.W., Stachel, T., 2014. The buffering capacity of lithospheric mantle:implications for diamond formation. Contrib. Mineral. Petrol. 168, 1-12
|
[55] |
Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307-315
|
[56] |
Marty, B., Bekaert, D.V., Broadley, M.W., Jaupart, C., 2019. Geochemical evidence for high volatile fluxes from the mantle at the end of the Archean. Nature 575, 485-488
|
[57] |
Matthews, A., Fouillac, C., Hill, R., O'Nions, R.K., Oxburgh, E.R., 1987. Mantle-derived volatiles in continental crust:the Massif Central of France. Earth Planet. Sci. Lett. 85, 117-128
|
[58] |
Michot, P., 1956. La géologie des zones profondes de l'écorce terrestre. Ann. Soc. géol. Belg 80, 19-25 (in French)
|
[59] |
Mitchell, R.H., Giuliani, A., O'Brien, H., 2019. What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15, 381-386
|
[60] |
Mullis, J., Dubessy, J., Poty, B., O'Neill, J., 1994. Fluid regimes during late stages of a continental collision. Geochim. Cosmochim. Acta 58, 2239-2267
|
[61] |
Newton, R.C., Manning, C.E., 2005. Solubilities of anhydrite, CaSO4, in NaCl-H2O solutions at high pressures and temperatures; applications to fluid-rock interaction. J. Petrol. 46, 701-716
|
[62] |
Newton, R.C., Tsunogae, T., 2014. Incipient charnockite:Characterization at the type localities. Precambrian Res. 253, 38-49
|
[63] |
Newton, R.C., Touret, J.L., Aranovich, L.Y., 2014. Fluids and H2O activity at the onset of granulite facies metamorphism. Precambrian Res. 253, 17-25
|
[64] |
Newton, R.C., 2020. Young and old granulites:A volatile connection. J. Geol. 128, 395-413
|
[65] |
Newton, R.C., Aranovitch, L. Ya., Touret, J.L.R., 2019. Streaming of saline fluids through Archean crust:Another view of charnockite-granite relations in southern India. Lithos 346-347, 105157. https://doi.org/10.1016/j.lithos.2019.105157
|
[66] |
Palin, R.M., Santosh, M., 2021. Plate tectonics:What, where, why, and when? Gondwana Res. 100, 3-24
|
[67] |
Pirajno, F., 2018. Halogens in hydrothermal fluids and their role in the formation and evolution of hydrothermal mineral systems. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. In:Harlov, D.E., Aranovich, L. (Eds.), The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Springer, Cham, pp. 759-804.
|
[68] |
Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G., 2016. Origin of REE-ferrocarbonatites in Southern Siberia (Russia):implications based on melt and fluid inclusions. Mineral. Petrol. 110, 845-859
|
[69] |
Rajesh, H.M. and Santosh, M., 2004. Charnockitic magmatism in southern India. J. Earth Sys. Sci. 113, 565-585
|
[70] |
Rajesh, H. M., 2007. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains:a case study from southern India.Contrib. Mineral. Petrol. 154, 591-606
|
[71] |
Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, Min. Soc. Am. 12, 646 pp
|
[72] |
Rudnick, R.L., Gao, S., Holland, H.D., Turekian, K.K., 2003. Composition of the continental crust. In:R.L. Rudnick, (Ed.), Treatise on Geochemistry, Volume 3, pp.1-64.
|
[73] |
Safonov, O.G., Butvina, V.G., Limanov, E.V., Kosova, S.A., 2019. Mineral indicators of reactions involving fluid salt components in the deep lithosphere. Petrology 27, 525-556
|
[74] |
Samuel, V.O., Santosh, M., Jang, Y., Kwon, S., 2021. Acidic fluids in the Earth's lower crust. Sci. Rep. 11, 1-8
|
[75] |
Santosh, M., 1992. Carbonic fluids in granulites:cause or consequence? J. Geol. Soc. India 39, 375-399
|
[76] |
Santosh, M., Omori, S., 2008. CO2 flushing:A plate tectonic perspective. Gondwana Res. 13, 86-102
|
[77] |
Schutt, D.L., Lowry, A.L., Buehler, J.S., 2018. Moho temperature and mobility of lower crust in the western United States. Geology 46, 219-222
|
[78] |
Simakov, S.K., 2003. Physico-chemical aspects of diamond-bearing eclogite formation in the upper mantle and Earth crust rocks. Russia Academy of Sciences, Far East Branch, Magadan, 187 (in Russian and English).
|
[79] |
Simakov, S., Stegnitskyi, Y., 2021. A new pyrope-based mineralogical petrological method for identifying the diamond potential of kimberlite/lamproite deposits. Ore En. Res. Geol. 7, 100013
|
[80] |
Sobolev, N., Logvinova, A., Tomilenko, A.A., Wirth, R., 2019. Minerals and fluid inclusions in diamonds from the Urals placers, Russia:Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochim. Cosmochim. Acta 266, 197-219
|
[81] |
Sorby, H.C., 1858. On the microscopical, structure of crystals, indicating the origin of minerals and rocks. Quart. J. Geo. Soc. London 14, 453-500
|
[82] |
Stagno, V., Fei, Y., 2020. The redox boundaries of Earth's interior. Elements 16, 167-172
|
[83] |
Touret, J., 1979. Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège Méridionale) sont-elles liées à d'anciennes évaporites? Sciences de la Terre, Nancy 33, 95-97
|
[84] |
Touret, J.L.R., 1985. Fluid regime in Southern Norway:the record of fluid inclusions. In:Tobi, A.C., Touret, J.L.R. (Eds.), The deep Proterozoic crust in the North Atlantic provinces, NATO ASI Series C-158, D. Reidel Pub., Dordrecht, pp. 517-550
|
[85] |
Touret, J.L.R., 1998. Lower crustal granulites:"soaks" and "pontiffs" revisited. Keynote address, Annual Meeting Metamorphic Study group, Mineralogical Society, Burlington House.
|
[86] |
Touret, J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russ. Geol. Geoph. 50, 1052-1062.
|
[87] |
Touret, J., 2021. Fluid regime during the formation of the continental crust. Academia Letters. Article 655.
|
[88] |
Touret, J.L., Hansteen, T. 1988. Geothermobarometry and fluid inclusions in a rock from the Doddabetta charnockite complex, Southwest India. Rend. Soc. Ital. Mineral. Petrol. 43, 65-82
|
[89] |
Touret, J.L.R., Hartel, T.H.D., 1990. Synmetamorphic fluid inclusions in granulites. In:Vielzeuf, D., Vidal, Ph. (Eds.), Granulites and crustal evolution, NATO ASI Series C311, Kluwer Acad. Pub., Dordrecht, pp. 397-417
|
[90] |
Touret, J.L.R., Marquis, G., 1994. Fluides profonds et conductivité électrique de la croûte continentale inférieure. C. R. Acad. Sci. Paris, t. 318, série II, 1469-1482 (in French with English abstract).
|
[91] |
Touret, J.L.R., Huizenga, J.M., 2011. Fluids in granulites. In:Van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds.), Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis of the Limpopo Complex of South Africa. Geol. Soc. Am. Mem. 207, pp. 25-37.
|
[92] |
Touret, J.L. and Huizenga, J.M., 2012. Fluid-assisted granulite metamorphism:a continental journey. Gondwana Res. 21, 224-235
|
[93] |
Touret, J.L.R., Nijland, T.G., 2013. Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. In:Harlov, D.E., Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rocks. Lecture Notes in Earth System Science. Springer-Verlag, Berlin-Heidelberg, pp. 411-465
|
[94] |
Touret, J.L.R., Huizenga, J.M., 2020. Large-scale fluid transfer between mantle and crust during supercontinent amalgamation and disruption. Russ. Geol. Geoph. 61, 527-542
|
[95] |
Touret, J.L.R., Santosh M., Huizenga J.M., 2016. High-temperature granulites and supercontinents. Geosci. Front. 7, 101-113
|
[96] |
Touret, J.L.R., Newton, R.C., Cuney, M., 2019. Incipient charnockites:the role of brines. Geosci. Front. 10, 1789-1901
|
[97] |
Touret, J.L.R., Huizenga, J.M., Kehelpannala, W., Piccoli, F., 2019. Vein-type graphite in Sri-Lanka:the ultimate fate of granulite fluids. Chem. Geol. 508, 167-181
|
[98] |
Walter, B.J., Steele-MacInnis, M., Giebel, R.J., Marks, M.A.W., Markl, G., 2020. Complex carbonate-sulfate brines in fluid inclusions from carbonatites. Geochim. Cosmochim. Acta 277, 224-242
|
[99] |
Watson, E.B., Brenan, J.M., 1987. Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett. 85, 497-515
|
[100] |
Weiss, Y., McNeill, J., Graham Pearson, D., Nowell, G.M., Ottley, C.J., 2015. Highly saline fluids from a subducting slab as the source of fluid-rich diamonds. Nature 504, 339-344
|
[101] |
Wever, T., 1989. The Conrad discontinuity and the top of the reflective lower crust-do they coincide? Tectonophysics 157, 39-58
|
[102] |
Yang, C.X., Santosh, M., Tsunogae, T., Shaji, E., Gao. P., Kwon, S., 2021. Global type area charnockites in southern India revisited:Implications for Earth's oldest supercontinent. Gondwana Res. 94, 106-132
|
[103] |
Zakharchenko, A.I., 1971. On time and physico-chemical conditions of mobilization, transport and precipitation of tungsten and tin in postmagmatic processes (exemplified by intragranitic chamber pegmatites). In Mineralogy and geochemistry of tungsten deposits (Materials of 2nd All-Union Symposium on Mineralogy, Geochemistry and Genesis of Tungsten Deposits of USSR). Leningrad University Publishing House, Leningrad pp. 287-306 (in Russian). Extended abstract in English in Fluid Inclusion Research Proceedings of COFFI 6, pp. 191-194.
|
[104] |
Zhamaletdinov, A.L., 2019. Intermediate conducting layers in the continental crust:myth and reality. In:Nurgaliev, D., Khairullina, N. (Eds.), Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields, Springer Proceedings in Earth and Environmental Sciences. Springer, Cham pp. 349-358
|