Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Fernanda Gervasoni, Tiago Jalowitzki, Marcelo Peres Rocha, Ricardo Kalikowski Weska, Eduardo Novais-Rodrigues, Rodrigo Antonio de Freitas Rodrigues, Yannick Bussweiler, Elisa Soares Rocha Barbosa, Jasper Berndt, Elton Luiz Dantas, Valmir da Silva Souza, Stephan Klemme. Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite[J]. Geoscience Frontiers, 2022, 13(5): 101429. doi: 10.1016/j.gsf.2022.101429
Citation: Fernanda Gervasoni, Tiago Jalowitzki, Marcelo Peres Rocha, Ricardo Kalikowski Weska, Eduardo Novais-Rodrigues, Rodrigo Antonio de Freitas Rodrigues, Yannick Bussweiler, Elisa Soares Rocha Barbosa, Jasper Berndt, Elton Luiz Dantas, Valmir da Silva Souza, Stephan Klemme. Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite[J]. Geoscience Frontiers, 2022, 13(5): 101429. doi: 10.1016/j.gsf.2022.101429

Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite

doi: 10.1016/j.gsf.2022.101429
Funds:

goire and Prof. Dr. Sebastian Tappe, who significantly improved our discussion. This work was supported by FAPDF (Call 03/2018

nster. Thanks goes to DRI-Litoteca de Porto Velho, Residê

We would like to thank Prof. N. Botelho for contributing with the microprobe analyzes, and also thanks to Beate Schmitte for her help during the microprobe and LA-ICP-MS analyzes in Mü

ncia de Porto Velho (REPO)-CPRM, who kindly provided drill holes of the Carolina kimberlite samples. Thanks also go to Dr. Daniel Evan Portner for fruitful discussion about tomography results. We would like to give special thanks for the excellent editorial work made by Prof. Dr. Kristoffer Szilas. Our thanks also go to the constructive comments and suggestions given by Prof. Dr. Jingao Liu, Prof. Dr. Michael Gré

Process n°

23568.93.50253.24052018) and Serrapilheira Institute (Serra-1709-18152).

  • Received Date: 2021-09-23
  • Accepted Date: 2022-06-30
  • Rev Recd Date: 2022-05-20
  • Publish Date: 2022-07-05
  • Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite, Pimenta Bueno Kimberlitic Field, which is located on the southwestern border of the Amazonian Craton. We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite. Mantle xenoliths are mainly clinopyroxenites and garnetites. Some of the clinopyroxenites were classified as GPP-PP-PKP (garnet-phlogopite peridotite, phlogopite-peridotite, phlogopite-K-richterite peridotite) suites, and two clinopyroxenites (eclogites) and two garnetites are relicts of an ancient subducted slab. Temperature and pressure estimates yield 855-1102℃ and 3.6-7.0 GPa, respectively. Clinopyroxenes are enriched in light rare earth elements (LREE) (LaN/YbN=5-62; CeN/SmN=1-3; where N=primitive mantle normalized values), they have high Ca/Al ratios (10-410), low to medium Ti/Eu ratios (742-2840), and low Zr/Hf ratios (13-26), which suggest they were formed by metasomatic reactions with CO2-rich silicate melts. Phlogopite with high TiO2 (>2.0 wt.%), Al2O3 (>12.0 wt.%), and FeOt (5.0-13.0 wt.%) resemble those found in the groundmass of kimberlites, lamproites and lamprophyres. Conversely, phlogopite with low TiO2 (<1.0 wt.%) and lower Al2O3 (<12.0 wt.%) are similar to those present in GPP-PP-PKP, and in MARID (mica-amphibole-rutile-ilmenite-diopside) and PIC (phlogopite-ilmenite-clinopyorxene) xenoliths. The GPP-PP-PKP suite of xenoliths, together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton. The Sr-Nd isotopic ratios of pyrope xenocrysts (G3, G9 and G11) from the Carolina kimberlite are characterized by high 143Nd/144Nd (0.51287-0.51371) and εNd (+4.55 to +20.85) accompanied with enriched 87Sr/86Sr (0.70405-0.71098). These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites. Based on Sr-Nd whole-rock compositions, the Carolina kimberlite has affinity with Group 1 kimberlites. The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9 ±5.4 Ma (2 σ), which represents the cooling age after the proto-kimberlite melt metasomatism. Therefore, we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle (garnetites and eclogites); with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.
  • loading
  • [1]
    Artemieva, I.M., Thybo, H., Cherepanova, Y., 2019. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth Planet. Sci. Lett. 501, 13-19. https://doi.org/10.1016/j.epsl.2018.09.034.
    [2]
    Aulbach, S., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2013. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 352, 153-169
    [3]
    Aulbach, S., Pearson, N.J., Reilly, S.Y.O., Doyle, B.J., 2007. Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J. Petrol. 48, 1843-1873. https://doi.org/10.1093/petrology/egm041
    [4]
    Agrusta, R., Goes, S., and van Hunen, J., 2017. Subducting-slab transition-zone interaction:Stagnation, penetration and mode switches. Earth Planet. Sci. Lett. 464, 10-23. https://doi.org/10.1016/j.epsl.2017.02.005
    [5]
    Araujo, A.L.N., Carlson, R.W., Gaspar, J.C., Bizzi, L.A., 2001. Petrology of kamafugites and kimberlites from the Alto Paranaíba Alkaline Province, Minas Gerais, Brazil. Contrib. Mineral. Petr., 142(2):163-177
    [6]
    Aulbach, S., Stachel, T., 2022. Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite. Nat. Commun. 13, 1924. https://doi.org/10.1038/s41467-022-29567-z
    [7]
    Becker, M., Le Roex, A.P., 2006. Geochemistry of South African On- and Off- craton, Group I and Group II Kimberlites:Petrogenesis and Source Region Evolution. J. Petrol. 47(4), 673-703. https://doi.org/10.1093/petrology/egi089
    [8]
    Becker, M., Le Roex, A.P., Class, C., 2007. Geochemistry and petrogenesis of South African transitional kimberlites located on and off the Kaapvaal Craton. S. A. J. Geol. 110(4), 631-646. doi.org/10.2113/gssajg.110.4.631
    [9]
    Bussweiler, Y., Stone, R.S., Pearson, D.G., Luth, R.W., Stachel, T., Kjarsgaard, B.A., Menzies, A., 2016. The evolution of calcite-bearing kimberlites by melt-rock reaction:evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Canada. Contrib, Mineral, Petrol, 171, 65, https://doi.org/10.1007/s00410-016-1275-3.
    [10]
    Bettencourt, J.S., Tosdal, R.M., Leite, W.B., Payolla, B.L., 1999. Mesoproterozoic Rapakivi Granites of the Rondônia Tin Province, Southwestern Border of the Amazon Craton, Brazil:I-reconnaissance U-Pb geochronology and regional implications. Precambrian Res. 95, 41-67
    [11]
    Blundy, J., Dalton, J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib. Mineral. Petrol. 139(3), 356-371
    [12]
    Boschman, L. M., van Hinsbergen, D. J. J., 2016. On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean. Sci. Adv. 2(7), e1600022. https://doi.org/10.1126/sciadv.1600022
    [13]
    Brod, J.A., Gibson, S.A., Thompson, R.N., Junqueira-Brod, T.C., Seer, H.J., de Moraes, L.C., Boaventura, G.R., 2000. The kamafugite-carbonatite association in the Alto Paranaíba Igneous Province (APIP) southeastern Brazil. Revista Brasileira de Geociências 30(3), 408-412. https://doi.org/10.25249/0375-7536.2000303408412
    [14]
    Cabral Neto, I., Nannini, F., Silveira, F.V., Cunha, L.M., 2017. Projeto Diamante Brasil, Áreas kimberlíticas e diamantíferas do estado de Rondônia. Série pedras preciosas, 11:1-85
    [15]
    Cabral Neto, I., Castro, C.C., Silveira, F.V., Cunha, L.M., Weska, R.K., Souza, W.S., 2014. Intrusões kimberlíticas de Rondônia:uma síntese com base no conhecimento atual. In:6° Simpósio Brasileiro de Geologia do Diamante. Patos de Minas. Volume 1, 97-102.
    [16]
    Canil, D. and Fedortchouk, Y. 1999. Garnet dissolution and the emplacement of kimberlites. Earth Planet. Sci. Lett. 167:227-237. https://doi.org/10.1016/S0012-821X(99)00019-9
    [17]
    Carlson, R.W., Araújo, A.L.N., Junqueira-Brod, T.C., Gaspar, J.C., Brod, J.A., Petrinovic, I.A., Hollanda, M.H.B.M., Pimentel, M.M., Sichel, S., 2007. Chemical and isotopic relationships between peridotite xenoliths and mafic-ultrapotassic rocks from Southern Brazil. Chemical Geology 242, 415-434, https://doi.org/https://doi.org/10.1016/j.chemgeo.2007.04.009
    [18]
    Carlson, R.W., Esperanca, S., Svisero, D.P. 1996. Chemical and Os isotopic study of cretaceous potassic rocks from southern Brazil. Contrib. Mineral. Petr. 125(4):393-405
    [19]
    Carswell, D.A., 1973. Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. In:Ahrean, L.H., Duncan, A.R., Erlank, A.J. (Eds.), International Conference on Kimberlites (Extended Abstracts). Pergamon Press, Oxford, Cape Town, South Africa, pp. 417-429
    [20]
    Carvalho, L.D.V., Jalowitzki, T., Scholz, R., Gonçalves, G.O., Rocha, M.P., Pereira, R.S., Lana, C., Castro, M.P., Queiroga, G., and Fuck, R.A., 2022. An exotic Cretaceous kimberlite linked to metasomatized lithospheric mantle beneath the southwestern margin of the São Francisco Craton, Brazil. Geosci. Front. 13, 101281. https://doi.org/10.1016/j.gsf.2021.101281
    [21]
    Chen, Y.-W., Wu, J., Suppe, J., 2019. Southward propagation of Nazca subduction along the Andes. Nature, 565(7740), 441-447. https://doi.org/10.1038/s41586-018-0860-1
    [22]
    Coe, N., le Roex, A., Gurney, J., Graham Pearson, D., Nowell, G., 2008. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa:constraints from whole rock geochemistry. Contrib. Mineral. Petrol. 156, 627-652. https://doi.org/10.1007/s00410-008-0305-1
    [23]
    Coloma, F., Valin, X., Oliveros, V., Vásquez, P., Creixell, C., Salazar, E., Ducea, M., 2017. Geochemistry of Permian to Triassic igneous rocks from northern Chile (28°-30°15'S):Implications on the dynamics of the proto-Andean margin. Andean Geol. 44 (2), 147-178
    [24]
    Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F., Upton, B.G.J., 1999. Carbonatite Metasomatism of the Oceanic Upper Mantle:Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. J. Petrol. 40, 133-165. https://doi.org/10.1093/petroj/40.1.133
    [25]
    Dawson J.B., Smith J.V., 1977. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta, 41:309-323
    [26]
    Deng, L., Liu, Y., Zong, K., Zhu, L., Xu, R., Hu, Z., Gao, S., 2017 Trace element and Sr isotope records of multiepisode carbonatite metasomatism on the eastern margin of the North China Craton. Geochem. Geophys. Geosyst. 18, 220-237, https://doi.org/10.1002/2016GC006618
    [27]
    Ellis, D.J., Green, D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71, 13-22
    [28]
    Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259-274
    [29]
    Erlank, A., Waters, F., Hawkesworth, C., Haggerty, S., Allsopp, H., Rickard, R., Menzies, M., 1987. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes. South Africa. In:Menzies, M.A., Hawkesworth, C.J. (Eds), Mantle Metasomatism. London:Academic Press. pp. 221-311
    [30]
    Felgate, M.R., 2014. The Petrogenesis of Brazilian kimberlites and kamafugites intruded along the 125° lineament:improved geochemical and geochronological constraints on magmatism in Rondonia and the Alto Paranaiba Igneous Province. Doctoral thesis, The University of Melbourne, 275pp
    [31]
    Fitzpayne, A., Giuliani, A., Hergt, J., Woodhead, J.D., Maas, R., 2020. Isotopic analyses of clinopyroxenes demonstrate the effects of kimberlite melt metasomatism upon the lithospheric mantle. Lithos 370-371, 105595. https://doi.org/10.1016/j.lithos.2020.105595
    [32]
    Fitzpayne, A., Giuliani, A., Hergt, J., Phillips, D., Janney, P., 2018a. New geochemical constraints on the origins of MARID and PIC rocks:Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos 318-319, 478-493
    [33]
    Fitzpayne, A., Giuliani, A., Phillips, D., Hergt, J., Woodhead, J.D., Farquhar, J., Fiorentini, M.L., Drysdale, R.N., Wu, N., 2018b. Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineral. Petrol. 112, 71-84
    [34]
    Fritschle, T., Prelević, D., Foley, S. F., Jacob, D. E., 2013. Petrological characterization of the mantle source of Mediterranean lamproites:Indications from major and trace elements of phlogopite. Chem. Geol. 353, 267-279. https://doi.org/10.1016/j.chemgeo.2012.09.006
    [35]
    Foley, S., 1992. Petrological characterization of the source components of potassic magmas:geochemical and experimental constraints. Lithos 28, 187-204
    [36]
    Foley, S.F., 2008. Rejuvenation and erosion of the cratonic lithosphere. Nature Geosci. 1, 503-510. https://doi.org/10.1038/ngeo261
    [37]
    Gaia, V.C.S., 2014. A Capa Carbonática do Sudoeste do Cráton Amazônico, Estado de Rondônia:nova Ocorrência e Extensão dos Eventos Pós-Glaciação Marinoana (635 Ma). Dissertação de Mestrado, Universidade Federal do Pará, pp. 75
    [38]
    Ganguly, J. And Tirone, M., 1999. Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion:theoretical formulation and applications. Earth Planet, Sci. Lett. 170, 131-140
    [39]
    Gervasoni, F., Klemme, S., Rohrbach, A., Grützner, T., Berndt, J., 2017. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts. Lithos 282-283, 173-186. https://doi.org/10.1016/j.lithos.2017.03.004
    [40]
    Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P., Mitchell, J.G., 1995. The Late Cretaceous impact of the Trindade mantle plume:evidence from large-volume, mafic, postassic magmatism in SE Brazil. J. Petrol. 36:189-229
    [41]
    Gibson, S.A., Thompson, R.N., Weska, R.K., Dickin, A.P., Leonardos, O.H., 1997. Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath western Brazil. Contrib. Mineral. Petrol. 126, 303-314
    [42]
    Gibson, S.A., Thompson, R.N., Day, J.A., Humphris, S.E., Dickin, A.P., 2005. Melt generation processes associated with the Tristan mantle plume:Constraints on the origin of EM-1. Earth Planet. Sci. Lett. 237(3-4), 744-767
    [43]
    Gioia, S.M.C.L., Pimentel, M.M., 2000. The Sm-Nd isotopic method in the geochronology laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências 72, 219-245. https://doi.org/10.1590/S0001-37652000000200009
    [44]
    Giuliani, A., Phillips, D., Kamenetsky, V. S., Goemann, K., 2016. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240-243, 189-201. https://doi.org/10.1016/j.lithos.2015.11.013
    [45]
    Giuliani, A., Phillips, D., Kamenetsky, V.S., Kendrick, M.A., Wyatt, B.A., Goemann, K., Hutchinson, G., 2014. Petrogenesis of mantle polymict breccias:insights into mantle processes coeval with kimberlite magmatism. J. Petrol. 55, 831-858
    [46]
    Gonzaga, G.M.,Tompkins, L.A. 1991. Geologia do Diamante. In:Cap. IV de Principais Depósitos Minerais do Brasil., Vol. IV Parte A-Gemas e Rochas Ornamentais. Coord. Geral:Carlos Schobbenhaus, Emanuel de Teixeira Queiroz e Carlos Eduardo da Silva Coelho, DNPM/CPRM, Brasília/DF. p. 56, 60, 83, 86, 88.
    [47]
    Gregoire, M., Bell, D. R., Le Roex., A. P., 2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths:their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib. Mineral. Petrol. 603-625. https://doi.org/10.1007/s00410-001-0315-8
    [48]
    Gregoire, M., Bell, D. R., Le Roex, A. P., 2003. Garnet Lherzolites from the Kaapvaal Craton (South Africa):Trace Element Evidence for a Metasomatic History. Journal of Petrology 44, 692-657
    [49]
    Griffin, W., Powell, W., Pearson, N.J., O'Reilly, S., 2008. GLITTER:data reduction software for laser ablation ICP-MS. Short Course Ser. 40, 308-311
    [50]
    Grütter, H.S., Gurney, J.J., Menzies, A.H., Winter, F., 2004. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77, 841-857. https://doi.org/10.1016/j.lithos.2004.04.012
    [51]
    Guarino, V., Wu, F.-Y., Lustrino, M., Melluso, L., Brotzu, P., Gomes, C. De B., Ruberti, E., Tassinari, C.C.G., Svisero, D.P., 2013. U-Pb ages, Sr-Nd- isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil. Chem. Geol. 353, 65-82, https://doi.org/10.1016/j.chemgeo.2012.06.016
    [52]
    Hart, S. R., Hauri, E. H., Oschmann, L. A., Whitehead, J. A., 1992. Mantle plumes and entrainment:Isotopic evidence. Science 256, 517-520. https://doi.org/10.1126/science.256.5056.517
    [53]
    Heaman, L., Teixeira, N.A., Gobbo, L., Gaspar J.C., 1998. U-Pb zircon ages for kimberlites from the Juína and Paranatinga provinces, Brazil. International Kimberlite Conference:Extended Abstracts, 7(1), 322-324. https://doi.org/10.29173/ikc2723.
    [54]
    Herzberg C.,2004. Geodynamic information in peridotite petrology. J. Petrol. 45, 2507-2530
    [55]
    Hunt, L., Stachel, T., Morton, R., Grutter, H., Creaser, R.A., 2009. The Carolina kimberlite, Brazil-Insights into an unconventional diamond deposit. Lithos 112:843-851
    [56]
    Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V, Oleinikov, O.B., 2018. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism:Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochim. Cosmochim. Acta 224, 132-153. https://doi.org/10.1016/j.gca.2017.12.028
    [57]
    Jones, R.A., Smith, J.V., Dawson, J.B., 1982. Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. J. Geol. 90,435-453
    [58]
    Kaminsky, F.V., Sablukov, S.M., Belousova, E.A., Andreazza, P., Tremblay, M., Griffin, W.L., 2010. Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos 114(1), 16-29
    [59]
    Kargin, A. V, Sazonova, L. V, Nosova, A. A., Lebedeva, N. M., Kostitsyn, Y. A., Kovalchuk, E. V., Tretyachenko, V. V., Tikhomirova, Y. S., 2019. Phlogopite in mantle xenoliths and kimberlite from the Grib pipe, Arkhangelsk province, Russia:Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite. Geosci. Front. 10(5),1941-1959. https://doi.org/10.1016/j.gsf.2018.12.006
    [60]
    Kargin, A. V, Sazonova, L. V, Nosova, A.A., Tretyachenko, V. V., 2016. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia :Evidence for mantle metasomatism associated with kimberlite melts Grib pipe. Lithos 262, 442-455. https://doi.org/10.1016/j.lithos.2016.07.015
    [61]
    Klemme, S., van der Laan, S.R., Foley, S.F., Günther, D., 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions, Earth Planet. Sci. Lett. 133(3), 439-448
    [62]
    Konzett, J., Armstrong, R. A., Günther, D., 2000. Modal metasomatism in the Kaapvaal craton lithosphere:constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib. Mineral. Petrol. 139, 704-719
    [63]
    Konzett, J., Sweeney, R. J., Thompson, A. B., Ulmer, P., 1997. Potassium Amphibole Stability in the Upper Mantle:an Experimental Study in a Peralkaline KNCMASH System to 8.5 GPa. J Petrol. 38, 537-568
    [64]
    Koornneef, J.M., Gress, M.U., Chinn, I.L., Jelsma, H.A., Harris, J.W., Davies, G.R., 2017. Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism. Nature Commun. 8, 648. https://doi.org/10.1038/s41467-017-00564-x
    [65]
    Krogh Ravna, E., 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer:an updated calibration. J. Metamorph. Geol. 18, 211-219
    [66]
    Krogh, E. J., 1988. The garnet-clinopyroxene Fe-Mg-geothermometer-a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 99, 44-48
    [67]
    Li, C., van der Hilst, R. D., Engdahl, E. R., Burdick, S., 2008. A new global model for P wave speed variations in Earth's mantle. Geochemistry Geophys. Geosystems 9(5), https://doi.org/10.1029/2007GC001806
    [68]
    Liu, J., Pearson, D. G., Wang, L. H., Mather, K. A., Kjarsgaard, B. A., Schaeffer, A. J., Irvine, G. J., Kopylova, M. G., Armstrong, J. P., 2021. Plume-driven recratonization of deep continental lithospheric mantle. Nature 592, https://doi.org/https://doi.org/10.1038/s41586-021-03395-5
    [69]
    Masun, K.M. Scott Smith, B.H., 2008. The Pimenta Bueno kimberlite field, Rondônia, Brasil:Tuffisitic kimberlite e transitional textures. J Volcanol. Geotherm. Res. 174:81-89
    [70]
    Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, R. D., 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226-250. https://doi.org/10.1016/j.gloplacha.2016.10.002
    [71]
    Melluso, L., Lustrino, M., Ruberti, E., Brotzu, P., de Barros Gomes, C., Morbidelli, L., Morra, V., Svisero, D.P., d'Amelio, F., 2008. Major-and trace-element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaiba, Brazil. Can. Mineral. 46(1), 19-40. https://doi.org/10.3749/canmin.46.1.19
    [72]
    Menzies, M, Rogers, N., Tindle, A., Hawkesworth, C., 1987. Metasomatic and Enrichment Processes in the Lithospheric Peridotites, and Effect of Asthenosphere-Lithosphere Interaction. In:Menzies, M.A., Hawkesworth, C.J. (Eds.), Mantle Metasomatism. London, Academic Press. pp. 313-361
    [73]
    Mišković, A., Spikings, R.A., Chew, D.M., Košler, J., Ulianov, A., Schaltegger, U., 2009. Tectonomagmatic evolution of western Amazonia:Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian eastern cordilleran granitoids. Geol. Soc. Am. Bull. 121(9-10), 1298-1324. https://doi.org/10.1130/B26488.1
    [74]
    Nimis, P., Taylor, W. R., 2000. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 139, 541-554
    [75]
    Nixon, P.H., 1987. Mantle Xenoliths. John Wiley & Sons, Chichester
    [76]
    Nowell, G.M., Pearson, D.G., Bell, D.R., Carlson, R.W., Smith, C.B., Kempton, P.D., and Noble, S.R., 2004. Hf Isotope Systematics of Kimberlites and their Megacrysts:New Constraints on their Source Regions. J. Petrol. 45(8), 1583-1612. https://doi.org/10.1093/petrology/egh024
    [77]
    Oliveros, V., Vásquez, P., Creixell, C., Lucassen, F., Ducea, M.N., Ciocca, I., González, J., Espinoza, M., Salazar, E., Coloma, F., and Kasemann, S.A., 2020. Lithospheric evolution of the Pre- and Early Andean convergent margin. Chile. Gondwana Res. 80, 202-227. https://doi.org/10.10146/j.gr.2019.11.002
    [78]
    Ordóñez-Carmona, O., Restrepo, J.J., Pimentel, M.M., 2006. Geochronological and isotropical review of pre-Devonian crustal basement of the Colombian Andes. J South Am. Earth Sci. 21, 372-382
    [79]
    O'Reilly, S.Y., Griffin, W.L., 2013. Mantle Metasomatism. In:Harlow, D.E., Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock:The Role of Fluids in Terrestrial and Extraterrestrial Processes. Springer, New York, pp. 471-534
    [80]
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite:Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508. https://doi.org/10.1039/c1ja10172b
    [81]
    Pearson, D.G., Canil, D., Shirey, S., 2014. Mantle samples included in volcanic rocks:xenoliths and diamonds.In:Holland, H.D., Turekian, K.K. (Eds.), Treatise in Geochemistry, vol. 2, pp. 171-275.
    [82]
    Pinho, M.A.S.B., Chemale Júnior, F., Van Schmus, W.R., Pinho, F.E.C., 2003. U-Pb and Sm-Nd evidence for 1.76-1.77 Ga magmatism in the Moreru region, Mato Grosso, Brazil:implications for province boundaries in the SW Amazon Craton. Precambrian Res. 126, 1-25. https://doi.org/10.1016/S0301-9268(03)00126-8
    [83]
    Pivin, M., Féménias, O., Demaiffe, D., 2009. Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112, 951-960. http://dx.doi.org/10.1016/j.lithos.2009.03.050
    [84]
    Powell, R., 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration:the garnet-clinopyroxene geothermometer revisited. J Metamorph. Geol. 3, 231-43
    [85]
    Priestley, K., McKenzie, D., Ho, T., 2018. A lithosphere-asthenosphere boundary:A global model derived from multimode surface-wave tomography and petrology. In:Yuan, H., Romanowicz, B. (Eds.), Lithospheric Discontinuities. American Geophysical Union. https://doi.org/10.1002/9781119249740.ch6
    [86]
    Raczek, I., Peter Jochum, K., Hofmann, A. W., 2003. Neodymium and Strontium Isotope Data for USGS Reference Materials BCR-1, BCR -2, BHV O-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and Eight MPI-DING Reference Glasses. Geostandard. Newslett. 27(2), 173-179. https://doi.org/10.1111/j.1751-908X.2003.tb00644.x
    [87]
    Read, G., Grutter, H., Winter, S., Luckman, N., Gaunt, F., Thomsen, F., 2004. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos 77(1-4), 803-818. https://doi.org/10.1016/j.lithos.2004.04.011
    [88]
    Reitsma, M.J., 2012. Reconstructing the late Paleozoic:Early Mesozoic plutonic and sedimentary record of south-east Peru:Orphaned back-arcs along the western margin of Gondwana. Doctoral thesis, University of Geneva, 226 p. Geneva. Doi: 10.13097/archive-ouverte/unige:23095.
    [89]
    Restrepo, J.J., Ordóñez-Carmona, O., Armstrong, R., Pimentel, M.M., 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. J. South Am. Earth Sci. 32, 497-507
    [90]
    Rizzotto, G.J., Santos, J.O.S., Hartman, L.A., Tohver, E., Pimentel, M.M., McNaugthon, N.J., 2013. The Mesoproterozoic Guaporé suture in the SW Amazonian Craton:geotectonic implications based on field geology, zircon geochronology e Nd-Sr isotope geochemistry. J. South Am. Earth Sci. 48, 271-295
    [91]
    Rudnick, R. L., McDonough, W. F., Chappell B. C., 1993. Carbonatite metasomatism in the northern Tanzanian mantle. Earth Planet. Sci. Lett. 114, 463-475
    [92]
    Santos, J.O.S., 2003. Geotectônica do Escudo das Guianas e Brasil-Central. In:Bizzi L.A., Schobbenhaus C., Vidotti R.M., Gonçalves J.H. (Eds.) Geologia, Tectônica e Recursos Minerais do Brasil. Brasília, CPRM, p. 169-226
    [93]
    Santos, J.O.S., Hartman, L.A., Gaudette, H.E., Groves, D.I., McNaughton, N.J., Fletcher, I.R., 2000. A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology. Gondwana Res. 3(4), 453-488
    [94]
    Santos, J.O.S., Rizzotto, G.J., Potter, P., McNaughton, N., Matos, R., Hartmann, L., Chemale Jr., F., Quadros, M.,2008. Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. Precambrian Res. 165, 120-152
    [95]
    Schulze, D., 2003. A classification scheme for mantle-derived garnets in kimberlite:a tool for investigating the mantle and exploring for diamonds. Lithos 71, 195-213. http://dx.doi.org/10.1016/S0024-4937(03)00113-0
    [96]
    Sgarbi, P.B., Heaman, L.M., Gaspar, J.C., 2004. U-Pb perovskite ages for brazilian kamafugitic rocks:further support for a temporal link to a mantle plume hotspot track. J. South Am. Earth Sci. 16(8), 715-724. https://doi.org/10.1016/j.jsames.2003.12.005
    [97]
    Smith, D. and Griffin, W.L., 2005. Garnetite Xenoliths and Mantle-Water Interactions Below the Colorado Plateau, Southwestern United States. J. Petrol. 46(9), 1901-1924. Doi: 10.1093/petrology/egi042.
    [98]
    Shu, Q., Brey, G.P., Gerdes, A., Hoefer, H.E., 2014. Mantle eclogites and garnet pyroxenites-the meaning of two-point isochrons, Sm-Nd and Lu-Hf closure temperatures and the cooling of the subcratonic mantle. Earth Planet. Sci. Lett. 389, 143-154. http://dx.doi.org/10.1016/j.epsl.2013.12.028
    [99]
    Smart, K.A., Cartigny, P., Tappe, S., O'Brien, H., Klemme, S., 2017. Lithospheric diamond formation as a consequence of methane-rich volatile flooding:An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim. Cosmochim. Acta 206, 312-342
    [100]
    Spetsius, Z.V., Taylor, L.A., 2002. Partial melting in mantle eclogite xenoliths:connections with diamond paragenesis. Int. Geol. Rev. 44:973-987. https://doi.org/10.2747/0020-6814.44.11.973
    [101]
    Spikings, R. and Paul, A., 2019. The Permian-Triassic history of magmatic rocks of the northern Andes (Colombia and Ecuador):Supercontinent assembly and disassembly. In:Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p. 1-43. Bogotá. Doi: 10.32685/pub.esp.36.2019.01.
    [102]
    Spikings, R., Reitsma, M.J., Boekhout, F., Mišković, A., Ulianov, A., Chiaradia, M., Gerdes, A., Schaltegger, U., 2016. Characterization of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res. 35, 124-143. https://doi.org/10.1016/j.gr.2016.02.008
    [103]
    Su, B., Chen, Y., Guo, S., Chen, S., & Li, Y.-B., 2019. Garnetite and pyroxenite in the mantle wedge formed by slab-mantle interactions at different melt/rock ratios. J. Geophy. Res.:Solid Earth, 124, 6504-6522. https://doi.org/10.1029/2019JB017347
    [104]
    Sun, S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geol. Soc. London, Spec. Publ. 42, 313-345. http://dx.doi.10.1144/GSL.SP.1989.042.01.19
    [105]
    Sweeney, R.J., Thompson, A.B., Ulmer, P., 1993. Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib. Mineral. Petrol. 115, 225-241
    [106]
    Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A., Joyce, N. and Hoefs, J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador:A consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 47(7):1261-1315
    [107]
    Tappe, S., Romer, R.L., Stracke, A., Steenfelt, A., Smart, K.A., Muehlenbachs, K., Torsvik, T.H., 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Sci. Lett. 466, 152-167
    [108]
    Tappe, S., Budde, G., Stracke, A., Wilson, A., Kleine, T., 2020. The tungsten-182 record of kimberlites above the African superplume:Exploring links to the core-mantle boundary. Earth Planet. Sci. Lett. 547, 116473. doi.org/10.1016/j.epsl.2020.116473
    [109]
    Tappe, S., Massuyeau, M., Smart, K.A., Woodland, A.B., Gussone, N., Milne, S. and Stracke, A., 2021. Sheared peridotite and megacryst formation beneath the Kaapvaal craton:A snapshot of tectonomagmatic processes across the lithosphere-asthenosphere transition. J. Petrol. 62(8), 1-39
    [110]
    Tappe, S., Shaikh, A.M., Wilson, A.H. and Stracke, A., 2021b. Evolution of ultrapotassic volcanism on the Kaapvaal craton:deepening the orangeite versus lamproite debate. Geological Society, London, Special Publications, SP513:SP513-2021-84.
    [111]
    Tappe, S., Smart, K., Torsvik, T.H., Massuyeau, M., de Wit, M.C.J., 2018. Geodynamics of kimberlites on a cooling Earth:Clues to plate tectonic evolution and deep volatile cycles. Earth and Planetary Science Letters 484, 1-14
    [112]
    Thirlwall, M. F., 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology:Isotope Geoscience section 94(2), 85-104. https://doi.org/10.1016/0168-9622(91)90002-E
    [113]
    van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L., and Torsvik, T. H., 2010. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3(1), 36-40
    [114]
    van der Meer, D. G., Torsvik, T. H., Spakman, W., van Hinsbergen, D. J. J., and Amaru, M. L.,2012. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geosci. 5(3), 215-219. https://doi.org/10.1038/ngeo1401
    [115]
    van der Meer, D. G., van Hinsbergen, D. J. J., and Spakman, W.,2018. Atlas of the underworld:Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309-448. https://doi.org/10.1016/j.tecto.2017.10.004
    [116]
    Van Orman, J.A., Grove, T.L., Shimizu, N., Layne, G.D., 2002. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib. Mineral. Petrol. 142, 416-424
    [117]
    Vinasco, C.J., Cordani, U.G., González, H., Weber, M., Peláez, C., 2006. Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. J. South Am. Earth Sci. 21(4), 355-371
    [118]
    Viscarret, P., Wright, J., Urbani, F., 2009. New U-Pb zircon ages of El Baúl Massif, Cojedes state, Venezuela. Revista Técnica de la Facultad de Ingeniería, Universidad del Zulia 32(3), 210-221.
    [119]
    Walter M. J., 1999. Melting residues of fertile peridotite and the origin of cratonic lithosphere. In:Mantle Petrology:Field Observations and High-Pressure Experimentation. Spec. Publ. Geochem. In:Fei, Y., Bertka, C. M., Mysen, B. O. Soc. No. 6 Geochemical Society, Houston. pp. 225-239.
    [120]
    Wass, S., Henderson, P., Elliott, C., 1980. Chemical heterogeneity and metasomatism in the upper mantle:evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Phil. Trans. R. Soc. Lond. A 297, 333-346
    [121]
    Waters, F.G., 1987. A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite. Contrib. Mineral. Petrol. 95, 523-533
    [122]
    Weska, R.K., Barbosa, P.F., Martins, M.V.C., Souza, V.S., Dantas, E.L., 2020. Pectolite in the Carolina kimberlitic intrusion, Espigão D'Oeste-Rondônia, Brazil. J. South Am. Earth Sci. 100, 102583. https://doi.org/10.1016/j.jsames.2020.102583
    [123]
    Zolinger, I.T., 2005. As intrusões de afinidade kimberlítica E1 e Es1 da região de Colorado do Oeste, Rondônia. PhD thesis, University of São Paulo (USP), São Paulo, Brazil, 130 phD thesis.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (40) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return