Volume 14 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Brendan Dyck. Sticking together: Mechanisms of quartz synneusis in high-silica magma Brendan Dyck[J]. Geoscience Frontiers, 2023, 14(2): 101512. doi: 10.1016/j.gsf.2022.101512
Citation: Brendan Dyck. Sticking together: Mechanisms of quartz synneusis in high-silica magma Brendan Dyck[J]. Geoscience Frontiers, 2023, 14(2): 101512. doi: 10.1016/j.gsf.2022.101512

Sticking together: Mechanisms of quartz synneusis in high-silica magma Brendan Dyck

doi: 10.1016/j.gsf.2022.101512
Funds:

I thank Associate Editor Dr. Richard Palin for handling this submission, Laurence Robb for loaning me the Bobbejaankop samples, and Marian Holness, George Bergantz and John Faithfull for the discussions that spurred on this paper. Helpful comments from three anonymous reviewers improved this manuscript. This work was supported by a NSERC Discovery Grant.

  • Received Date: 2022-08-22
  • Accepted Date: 2022-11-15
  • Rev Recd Date: 2022-10-24
  • Publish Date: 2023-03-06
  • The formation of crystal clusters by synneusis (magmatic sintering) affects a wide range of magmatic systems from olivine clusters in komatiite to quartz clusters in high-silica granite. A common feature of synneusis in any mineral phase is the alignment of neighbouring crystals in certain lower-energy orientation relationships. However, the underlying mechanisms involved with both the alignment of crystals in lower-energy orientations and the binding of crystal clusters are not well understood. In the absence of mechanisms that bind crystals together upon contact, the same hydrodynamic forces that may bring crystals together can in theory also serve to disaggregate clusters. Here I use cathodoluminescence imaging and crystal orientation data from quartz clusters in high-silica granite to show that i) rapid crystalline neck growth along attachment surfaces and ii) grain rotation are two mechanisms that reduce the grain boundary energy of crystal clusters while increasing clusters’ shear strength. The continued crystallization of sintered phases as the magmatic body cools further cements crystal pairs and resists cluster disaggregation. Together these mechanisms underpin both the formation and preservation of large crystal clusters in dynamic magmatic environments.
  • loading
  • [1]
    Alexandrov, P., 2001. Synneusis of zircon:why not?Mineralogical Mag.65, 71-79
    [2]
    Bachmann, F., Hielscher, R., Schaeben, H., 2010. Texture analysis with MTEX-free and open source software toolbox. Solid State Phenomena 160, 63-68
    [3]
    Beane, R., Wiebe, R. A., 2012. Origin of quartz clusters in Vinalhaven granite and porphyry, coastal Maine. Contributions to Mineralogy and Petrology 163, 1069-1082
    [4]
    Bergantz, G. W., Ni, J., 1999. A numerical study of sedimentation by dripping instabilities in viscous fluids. International Journal of Multiphase Flow. Elsevier 25, 307-320
    [5]
    Bouala, G. N., Clavier, N., Léchelle, J., Monnier, J., Ricolleau, C., Dacheux, N., Podor, R., 2017. High-temperature electron microscopy study of ThO2 microspheres sintering. Journal of the European Ceramic Society 37, 727-738
    [6]
    Braginsky, M., Tikare, V., Olevsky, E., 2005. Numerical simulation of solid state sintering. International journal of solids and structures 42, 621-636
    [7]
    Cahn, J. W., Elliott, C. M., Novick-Cohen, A., 1996. The Cahn-Hilliard equation with a concentration dependent mobility:motion by minus the Laplacian of the mean curvature.European journal of applied mathematics,7, 287-301
    [8]
    Chaim, R., 2012. Grain coalescence by grain rotation in nano-ceramics. Scripta Materialia 66, 269-271
    [9]
    Chan, S.-W. Balluffi, R. W., 1985. Study of energy vs misorientation for grain boundaries in gold by crystallite rotation method-I.[001] twist boundaries. Acta Metallurgica 33, 1113-1119
    [10]
    Chan, S.-W., Balluffi, R. W., 1986. Study of energy vs misorientation for grain boundaries in gold by crystallite rotation method-II. Tilt boundaries and mixed boundaries. Acta Metallurgica 34, 2191-2199
    [11]
    Dake, J. M., Oddershede, J., Sørensen, H. O., Werz, T., Shatto, J. C., Uesugi, K., Schmidt, S., Krill, C. E., 2016. Direct observation of grain rotations during coarsening of a semisolid Al-Cu alloy. Proc. Natl. Acad. Sci. 113, E5998-E6006.
    [12]
    Dowty, E., 1980. Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In:Hargraves, R.B- (Ed.), Physics of Magmatic Processes. Princeton University Prcss, Princeton, New Jersey, pp. 419-485
    [13]
    Duyster, J., Stöckhert, B., 2001. Grain boundary energies in olivine derived from natural microstructures. Contributions to Mineralogy and Petrology 140, 567-576
    [14]
    Dyck, B., Holness, M., 2022. Microstructural evidence for convection in high-silica granite. Geology. Geological Society of America 50, 295-299
    [15]
    Exner, H. E., Arzt, E., 1990. Sintering processes. Sintering Key Papers 157-184
    [16]
    Gardiner, N. J., Hawkesworth, C. J., Robb, L. J., Mulder, J. A., Wainwright, A. N. & Cawood, P. A. (2021). Metal anomalies in zircon as a record of granite-hosted mineralization. Chemical Geology 585, 120580
    [17]
    Gogoi, B., Saikia, A., 2018. Synneusis:does its preservation imply magma mixing? Mineralogia 49, 99-117
    [18]
    Grupp, R., Nöthe, M., Kieback, B., Banhart, J., 2011. Cooperative material transport during the early stage of sintering. Nature Communications 2, 1-6
    [19]
    Hansen, L. N., Warren, J. M., 2015. Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone.Journal of Geophysical Research:Solid Earth 120, 2717-2738
    [20]
    Holness, M. B., 2018. Melt segregation from silicic crystal mushes:a critical appraisal of possible mechanisms and their microstructural record. Contributions to Mineralogy and Petrology 173, 48
    [21]
    Jerram, D. A., Cheadle, M. J., Philpotts, A. R., 2003. Quantifying the Building Blocks of Igneous Rocks:Are Clustered Crystal Frameworks the Foundation? Journal of Petrology 44, 2033-2051
    [22]
    Kini, M. K., Chokshi, A. H., 2020. Initial stage sintering of polycrystalline spheres:A model and experiments. Materialia, 100665
    [23]
    Laporte, D., 1994. Wetting behavior of partial melts during crustal anatexis:the distribution of hydrous silicic melts in polycrystalline aggregates of quartz. Contributions to Mineralogy and Petrology. Springer 116, 486-499
    [24]
    McIntire, M. Z., Bergantz, G. W., Schleicher, J. M., 2019. On the hydrodynamics of crystal clustering. Philosophical Transactions of the Royal Society A 377, 20180015
    [25]
    Nakaso, K., Shimada, M., Okuyama, K., Deppert, K., 2002. Evaluation of the change in the morphology of gold nanoparticles during sintering. Journal of Aerosol Science 33, 1061-1074
    [26]
    Nazari-Dehkordi, T., Robb, L., 2022. Zircon mineral chemistry and implications for magmatic-hydrothermal evolution of the granite-hosted Zaaiplaats Sn deposit, Bushveld Large Igneous Province, South Africa. Lithos 416, 106672
    [27]
    Ohfuji, H., Boyle, A. P., Prior, D. J., Rickard, D., 2005. Structure of framboidal pyrite:An electron backscatter diffraction study.American Mineralogist 90, 1693-1704
    [28]
    Oyegbile, B., Ay, P., Narra, S., 2016. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems:A review. Environmental Engineering Res. 21, 1-14
    [29]
    Robb, L. J., Freeman, L. A., Armstrong, R. A., 2000. Nature and longevity of hydrothermal fluid flow and mineralisation in granites of the Bushveld Complex, South Africa. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 91, 269-281
    [30]
    Ruggles, T. J., Rampton, T. M., Khosravani, A., Fullwood, D. T., 2016. The effect of length scale on the determination of geometrically necessary dislocations via EBSD continuum dislocation microscopy. Ultramicroscopy 164, 1-10
    [31]
    Ryan, A. G., Russell, J. K., Heap, M. J., Zimmerman, M. E., Wadsworth, F. B., 2020. Timescales of porosity and permeability loss by solid-state sintering. Earth and Planetary Science Letters 549, 116533
    [32]
    Trautt, Z. T., Mishin, Y., 2012. Grain boundary migration and grain rotation studied by molecular dynamics. Acta Materialia 60, 2407-2424
    [33]
    Trautt, Z. T., Mishin, Y., 2014. Capillary-driven grain boundary motion and grain rotation in a tricrystal:a molecular dynamics study. Acta materialia 65, 19-31
    [34]
    Upmanyu, M., Srolovitz, D. J., Lobkovsky, A. E., Warren, J. A., Carter, W. C., 2006. Simultaneous grain boundary migration and grain rotation. Acta Materialia 54, 1707-1719
    [35]
    Vance, J. A. (1969). On synneusis.Contributions to Mineralogy and Petrology,Springer 24, 7-29
    [36]
    Vance, J. A., Gilreath, J. P., 1967. The effect of synneusis on phenocryst distribution patterns in some porphyritic igneous rocks. American Mineralogist 52, 529-536
    [37]
    Walraven, E., 1993. Geochronology of the Nebo granite, Bushveld complex. South African journal of geology 96, 31-41
    [38]
    Wheeler, J., Prior, D., Jiang, Z., Spiess, R., Trimby, P., 2001. The petrological significance of misorientations between grains. Contributions to mineralogy and petrology. Springer 141, 109-124
    [39]
    Wieser, P. E., Vukmanovic, Z., Kilian, R., Ringe, E., Holness, M. B., Maclennan, J., Edmonds, M., 2019. To sink, swim, twin, or nucleate:A critical appraisal of crystal aggregation processes. Geology 47, 948-952
    [40]
    Zhang, W., Gladwell, I., 1998. Sintering of two particles by surface and grain boundary diffusion-a three-dimensional model and a numerical study.Computational materials science 12, 84-104
    [41]
    Zhu, Y.-X., Wang, L.-X., Ma, C.-Q., Zhang, C., 2018. A flower-like glomerophyric diorite porphyry from Central China:Constraints on the unusual texture. Lithos 318, 1-13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return