Zipei Guo, Haibo Zou. Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling[J]. Geoscience Frontiers, 2023, 14(1): 101497. DOI: 10.1016/j.gsf.2022.101497
Citation: Zipei Guo, Haibo Zou. Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling[J]. Geoscience Frontiers, 2023, 14(1): 101497. DOI: 10.1016/j.gsf.2022.101497

Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling

  • Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (εHf values) increases with decreasing zircon Ti content and falling temperature (T), suggesting gradually increasing incorporation of relatively high εHf juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon εHf and zircon δ18O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high εHf and low δ18O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-T, high-εHf and low-δ18O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ±6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return